如圖正方形ABCD的邊長(zhǎng)為4,E、F分別為DC、BC中點(diǎn).

(1)求證:△ADE≌△ABF.

(2)求△AEF的面積.

 

【答案】

解:(1)證明:∵四邊形ABCD為正方形,∴AB=AD,∠=90°,DC=CB,

∵E、F為DC、BC中點(diǎn),∴DE=DC,BF=BC!郉E=BF。

∵在△ADE和△ABF中,,∴△ADE≌△ABF(SAS)。

(2)由題知△ABF、△ADE、△CEF均為直角三角形,

且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,

∴SAEF=S正方形ABCD﹣SADE﹣SABF﹣SCEF

=4×4﹣×4×2﹣×4×2﹣×2×2=6。

【解析】

試題分析:(1)由四邊形ABCD為正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分別為DC、BC中點(diǎn),得出DE=BF,進(jìn)而證明出兩三角形全等;

 (2)首先求出DE和CE的長(zhǎng)度,再根據(jù)SAEF=S正方形ABCD﹣SADE﹣SABF﹣SCEF得出結(jié)果。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖正方形ABCD的頂點(diǎn)C在直線a上,且點(diǎn)B,D到a的距離分別是1,2.則這個(gè)正方形的邊長(zhǎng)為( 。
A、1
B、2
C、4
D、
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖正方形ABCD的邊長(zhǎng)為2,AE=EB,線段MN的兩端點(diǎn)分別在CB、CD上滑動(dòng),且MN=1,當(dāng)CM為何值時(shí)△AED與以M、N、C為頂點(diǎn)的三角形相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖正方形ABCD的邊BC的延長(zhǎng)線上取點(diǎn)M,使CM=AC=2,AM與CD相交于點(diǎn)N,∠ANC=
 
度,△ACM的面積=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄂州)如圖正方形ABCD的邊長(zhǎng)為4,E、F分別為DC、BC中點(diǎn).
(1)求證:△ADE≌△ABF.
(2)求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖正方形ABCD的邊長(zhǎng)是a,△AEF是等邊三角形,點(diǎn)E在BC上,點(diǎn)F在CD上
(1)求證:△ABE≌△ADF;
(2)求等邊△AEF的邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案