如圖,一次函數(shù)的圖象的圖象相交于點(diǎn)P,則方程組的解是             

 

 

【答案】

.

【解析】

試題分析:∵由圖象可知:一次函數(shù)y=k1x+b1的圖象l1與y=k2x+b2的圖象l2的交點(diǎn)P的坐標(biāo)是(-2,3),

∴方程組的解是.

考點(diǎn):一次函數(shù)與二元一次方程(組).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y=
12x
的圖象和一次函數(shù)y=kx-7的圖象都經(jīng)過點(diǎn)P(m,2).
(1)求這個一次函數(shù)的解析式;
(2)如果等腰梯形ABCD的頂點(diǎn)A、B在這個一次函數(shù)的圖象上,頂點(diǎn)C、D在這個反比例函數(shù)的圖象上,兩底AD、BC與y軸平行,且A和B的橫坐標(biāo)分別為a、b(b>a>0),求代數(shù)式ab的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= –  ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時,一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時,一次函數(shù)值小于反比例函數(shù)值.

(1)    求一次函數(shù)的解析式;

(2)    設(shè)函數(shù)y2=  (x>0)的圖象與y1= –  (x<0)的圖象關(guān)于y軸對稱.在y2=  (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)(x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0),當(dāng)x<-1時,一次函數(shù)值大于反比例函數(shù)值,當(dāng)x>-1時,一次函數(shù)值小于反比例函數(shù)值.

(1)求一次函數(shù)的解析式;

(2)設(shè)函數(shù)(x>0)的圖象與(x<0)的圖象關(guān)于y軸對稱,在(x>0)的圖象上取一點(diǎn)P(P點(diǎn)的橫坐標(biāo)大于2),過P點(diǎn)作PQ⊥x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

解答:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時,一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時,一次函數(shù)值小于反比例函數(shù)值.

(1)   求一次函數(shù)的解析式;

(2)   設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對稱.在y2= (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)y1= – ( x<0)的圖象相交于A點(diǎn),與y軸、x軸分別相交于B、C兩點(diǎn),且C(2,0).當(dāng)x<–1時,一次函數(shù)值大于反比例函數(shù)的值,當(dāng)x>–1時,一次函數(shù)值小于反比例函數(shù)值.

(1)   求一次函數(shù)的解析式;

(2)   設(shè)函數(shù)y2= (x>0)的圖象與y1= – (x<0)的圖象關(guān)于y軸對稱.在y2= (x>0)的圖象上取一點(diǎn)PP點(diǎn)的橫坐標(biāo)大于2),過PPQx軸,垂足是Q,若四邊形BCQP的面積等于2,求P點(diǎn)的坐標(biāo).

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案