(2010•宜昌)如圖,已知Rt△ABC和Rt△EBC,∠B=90°.以邊AC上的點(diǎn)O為圓心、OA為半徑的⊙O與EC相切,D為切點(diǎn),AD∥BC.
(1)用尺規(guī)確定并標(biāo)出圓心O;(不寫作法和證明,保留作圖痕跡)
(2)求證:∠E=∠ACB;
(3)若AD=1,,求BC的長.

【答案】分析:(1)若⊙O與EC相切,且切點(diǎn)為D,可過D作EC的垂線,此垂線與AC的交點(diǎn)即為所求的O點(diǎn).
(2)由(1)知OD⊥EC,則∠ODA、∠E同為∠ADE的余角,因此∠E=∠ODA=∠OAD,而AD∥BC,可得∠OAD=∠ACB,等量代換后即可證得∠E=∠ACB.
(3)由(2)證得∠E=∠ACB,即tan∠E=tan∠DAC=,那么BC=AB;由于AD∥BC,易證得△EAD∽△EBC,可用AB表示出AE、BC的長,根據(jù)相似三角形所得比例線段即可求出AB的長,進(jìn)而可得到BC的值.
解答:(1)解:(O即為AD中垂線與AC的交點(diǎn))或(過D點(diǎn)作EC的垂線與AC的交點(diǎn)等).
能見作圖痕跡,作圖基本準(zhǔn)確即可,漏標(biāo)O可不扣分(2分)


(2)證明:連接OD.∵AD∥BC,∠B=90°,∴∠EAD=90°.
∴∠E+∠EDA=90°,即∠E=90°-∠EDA.
又∵圓O與EC相切于D點(diǎn),∴OD⊥EC.
∴∠EDA+∠ODA=90°,即∠ODA=90°-∠EDA.
∴∠E=∠ODA;(3分)
(說明:任得出一個角相等都評1分)
又∵OD=OA,∴∠DAC=∠ODA,∴∠DAC=∠E. (4分)
∵AD∥BC,∴∠DAC=∠ACB,∴∠E=∠ACB. (5分)

(3)解:Rt△DEA中,tanE=,又tanE=tan∠DAC=,
∵AD=1,∴EA=. (6分)
Rt△ABC中,tan∠ACB=
又∠DAC=∠ACB,∴tan∠ACB=tan∠DAC.
=,∴可設(shè)AB=x,BC=2x,
∵AD∥BC,∴Rt△EAD∽Rt△EBC. (7分)
=,即=
∴x=1,
∴BC=2x=2. (8分)
點(diǎn)評:此題主要考查了切線的性質(zhì)、直角三角形的性質(zhì)、相似三角形的判斷和性質(zhì)等重要知識,能夠準(zhǔn)確的判斷出O點(diǎn)的位置,是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•宜昌)如圖,直線y=hx+d與x軸和y軸分別相交于點(diǎn)A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點(diǎn)C;以AC為斜邊、∠CAO為內(nèi)角的直角三角形,與以CO為對角線、一邊在x軸上的矩形面積相等;點(diǎn)C,P在以B為頂點(diǎn)的拋物線y=mx2+nx+k上;直線y=hx+d、雙曲線y=和拋物線y=ax2+bx+c同時經(jīng)過兩個不同的點(diǎn)C,D.
(1)確定t的值;
(2)確定m,n,k的值;
(3)若無論a,b,c取何值,拋物線y=ax2+bx+c都不經(jīng)過點(diǎn)P,請確定P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2010•宜昌)如圖,直線y=hx+d與x軸和y軸分別相交于點(diǎn)A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點(diǎn)C;以AC為斜邊、∠CAO為內(nèi)角的直角三角形,與以CO為對角線、一邊在x軸上的矩形面積相等;點(diǎn)C,P在以B為頂點(diǎn)的拋物線y=mx2+nx+k上;直線y=hx+d、雙曲線y=和拋物線y=ax2+bx+c同時經(jīng)過兩個不同的點(diǎn)C,D.
(1)確定t的值;
(2)確定m,n,k的值;
(3)若無論a,b,c取何值,拋物線y=ax2+bx+c都不經(jīng)過點(diǎn)P,請確定P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•宜昌)如圖,直線y=hx+d與x軸和y軸分別相交于點(diǎn)A(-1,0),B(0,1),與雙曲線y=在第一象限相交于點(diǎn)C;以AC為斜邊、∠CAO為內(nèi)角的直角三角形,與以CO為對角線、一邊在x軸上的矩形面積相等;點(diǎn)C,P在以B為頂點(diǎn)的拋物線y=mx2+nx+k上;直線y=hx+d、雙曲線y=和拋物線y=ax2+bx+c同時經(jīng)過兩個不同的點(diǎn)C,D.
(1)確定t的值;
(2)確定m,n,k的值;
(3)若無論a,b,c取何值,拋物線y=ax2+bx+c都不經(jīng)過點(diǎn)P,請確定P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(02)(解析版) 題型:選擇題

(2010•宜昌)如圖,在方格紙上△DEF是由△ABC繞定點(diǎn)P順時針旋轉(zhuǎn)得到的.如果用(2,1)表示方格紙上A點(diǎn)的位置,(1,2)表示B點(diǎn)的位置,那么點(diǎn)P的位置為( )

A.(5,2)
B.(2,5)
C.(2,1)
D.(1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•宜昌)如圖,正六邊形ABCDEF關(guān)于直線l的軸對稱圖形是六邊形A′B′C′D′E′F′,下列判斷錯誤的是( )

A.AB=A′B′
B.BC∥B′C′
C.直線l⊥BB′
D.∠A′=120°

查看答案和解析>>

同步練習(xí)冊答案