【題目】如圖,已知RtACB中,C=90°BAC=45°.

(1)(4分)用尺規(guī)作圖,在CA的延長線上截取AD=AB,并連接BD(不寫作法,保留作圖痕跡);

(2)(4分)求∠BDC的度數(shù);

(3)(4分)定義:在直角三角形中,一個銳角A的鄰邊與對邊的比叫做∠A的余切,記作cotA,即,根據(jù)定義,利用圖形求cot22.5°的值.

【答案】(1)答案見試題解析;(2)22.5°;(3)

【解析】

試題分析:(1)以點A為圓心,AB為半徑作弧交CA的延長線于D,然后連結(jié)BD;

(2)由AD=AB得ADB=ABD,然后利用三角形外角性質(zhì)可求出ADB=22.5°;

(3)設(shè)AC=x,根據(jù)題意得ACB為等腰直角三角形,則BC=AC=x,AB=,所以AD=AB=,CD=,在RtBCD中,根據(jù)余切的定義求解.

試題解析:(1)如圖,

(2)AD=AB,∴∠ADB=ABD,而BAC=ADB+ABD,∴∠ADB=BAC=×45°=22.5°,即BDC的度數(shù)為22.5°;

(3)設(shè)AC=x,∵∠C=90°,BAC=45°,∴△ACB為等腰直角三角形,BC=AC=x,AB=AC=,AD=AB=,CD==,在RtBCD中,cotBDC===,即cot22.5°=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某課題小組為了解某品牌電動自行車的銷售情況,對某專賣店第一季度該品牌A、B、C、D四種型號電動車的銷量做了統(tǒng)計,繪制成如圖所示的兩幅統(tǒng)計圖(均不完整)
(1)該店第一季度售出這種品牌的電動自行車共多少輛?
(2)把兩幅統(tǒng)計圖補充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠A=∠ADE,∠C=∠E.

(1)若∠EDC=3∠C,求∠C的度數(shù).
(2)求證:BE∥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F(xiàn)為垂足,則下列四個結(jié)論:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF垂直平分AD.其中正確的有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩種酒精,一種濃度是60%,另一種濃度為90%,現(xiàn)在要配制成濃度為70%的酒精300克,問:每種需各取多少克?(200克,100克)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是我們常見的地磚上的圖案,其中包含了一種特殊的平面圖形﹣正八邊形.

(1)如圖②,AE是⊙O的直徑,用直尺和圓規(guī)作⊙O的內(nèi)接正八邊形ABCDEFGH(不寫作法,保留作圖痕跡);

(2)在(1)的前提下,連接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一個圓錐的側(cè)面,則這個圓錐底面圓的半徑等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是(
A.9的平方根為3?
B. 化簡后的結(jié)果是
C. 最簡二次根式?
D.﹣27沒有立方根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動點A從原點出發(fā)向數(shù)軸負(fù)方向運動,同時,動點B也從原點出發(fā)向數(shù)軸正方向運動,3秒后,兩點相距15個單位長度.已知動點A、B的速度比是1:4.(速度單位:單位長度/秒)
(1)求出兩個動點運動的速度;
(2)若A、B兩點從(1)中的位置同時向數(shù)軸負(fù)方向運動,幾秒后原點恰好處在兩個動點正中間;
(3)在(2)中A、B兩點繼續(xù)同時向數(shù)軸負(fù)方向運動時,另一動點C同時從B點位置出發(fā)向A運動,當(dāng)遇到A后,立即返回向B點運動,遇到B點后立即返回向A點運動,如此往返,直到B追上A時,C立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始到停止運動,運動的路程是多少單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)(-12)-5+(-14)-(-39)
(2)
(3)-22
(4) ×(-15)(用簡便方法計算)

查看答案和解析>>

同步練習(xí)冊答案