【題目】已知:如圖,在△ABC中,直線PQ垂直平分AC,與邊AB交于點(diǎn)E,連接CE,過(guò)點(diǎn)CCFBAPQ于點(diǎn)F,連接AF.

(1)求證:四邊形AECF是菱形;

(2)若AD=3,AE=5,則求菱形AECF的面積.

【答案】(1)見(jiàn)解析;(2)菱形AECF的面積為24.

【解析】分析:(1)首先利用AAS證明,進(jìn)而得到,于是得打四邊形是平行四邊形,再根據(jù)對(duì)角線互相垂直的平行四邊形是菱形即可得到結(jié)論;
(2)首先利用勾股定理求出的長(zhǎng),再利用對(duì)角線乘積的一半求出菱形的面積.

詳解:證明:(1)CFAB,

∴∠DCF=DAE,

PQ垂直平分AC,

CD=AD,

CDFAED

CDFAED,

AE=CF,

∴四邊形AECF是平行四邊形,

PQ垂平分AC,

AE=CE,

∴四邊形AECF是菱形;

(2)∵四邊形AECF是菱形,

ADE是直角三角形,

AD=3,AE=5,

DE=4,

AC=2AD=6,EF=2DE=8,

∴菱形AECF的面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).

(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;

(2)根據(jù)所給條件,請(qǐng)直接寫(xiě)出不等式kx+b>的解集;

(3)過(guò)點(diǎn)BBCx軸,垂足為C,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一組數(shù)據(jù)1,23,4,x的平均數(shù)與中位數(shù)相同,則實(shí)數(shù)x的值不可能( )

A. 0 B. 2.5 C. 3 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B、C在數(shù)軸上表示的數(shù)分別為a、b、c,且OA+OB=OC,則下列結(jié)論中:

①abc<0;②a(b+c)>0;③a﹣c=b;④

其中正確的個(gè)數(shù)有 ( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1的解析式為y=﹣x+2,l1x軸交于點(diǎn)B,直線l2經(jīng)過(guò)點(diǎn)D(0,5),與直線l1交于點(diǎn)C(﹣1,m),且與x軸交于點(diǎn)A,

(1)求點(diǎn)C的坐標(biāo)及直線l2的解析式;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)后得到圖形.請(qǐng)回答下列問(wèn)題:

1)點(diǎn)的對(duì)應(yīng)點(diǎn)是點(diǎn)______,線段的對(duì)應(yīng)線段是______,的對(duì)應(yīng)角是______

2)旋轉(zhuǎn)中心是______的大小是______,四邊形的形狀是______;

3)與線段相等的線段有______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了弘揚(yáng)中華傳統(tǒng)文化,了解學(xué)生整體閱讀能力,組織全校的1000名學(xué)生進(jìn)行一次閱讀理解大賽.從中抽取部分學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,根據(jù)測(cè)試成績(jī)繪制了頻數(shù)分布表和頻數(shù)分布直方圖:

分組/分

頻數(shù)

頻率

50x60

6

0.12

60x70

0.28

70x80

16

0.32

80x90

10

0.20

90x100

4

0.08

1)頻數(shù)分布表中的

2)將上面的頻數(shù)分布直方圖補(bǔ)充完整;

3)如果成績(jī)達(dá)到9090分以上者為優(yōu)秀,可推薦參加決賽,估計(jì)該校進(jìn)入決賽的學(xué)生大約有 人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】知識(shí)是用來(lái)為人類(lèi)服務(wù)的,我們應(yīng)該把它們用于有意義的方面.下面就兩個(gè)情景請(qǐng)你作出評(píng)判.

情景一:從教室到圖書(shū)館,總有少數(shù)同學(xué)不走人行道而橫穿草坪,這是為什么呢?試用所學(xué)數(shù)學(xué)知識(shí)來(lái)說(shuō)明這個(gè)問(wèn)題.

情景二:A、B是河流l兩旁的兩個(gè)村莊,現(xiàn)要在河邊修一個(gè)抽水站向兩村供水,問(wèn)抽水站修在什么地方才能使所需的管道最短?請(qǐng)?jiān)趫D中表示出抽水站點(diǎn)P的位置,并說(shuō)明你的理由:

你贊同以上哪種做法?你認(rèn)為應(yīng)用數(shù)學(xué)知識(shí)為人類(lèi)服務(wù)時(shí)應(yīng)注意什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了綠化環(huán)境,某中學(xué)八年級(jí)(3班)同學(xué)都積極參加了植樹(shù)活動(dòng),下面是今年3月份該班同學(xué)植樹(shù)情況的扇形統(tǒng)計(jì)圖和不完整的條形統(tǒng)計(jì)圖:

請(qǐng)根據(jù)以上統(tǒng)計(jì)圖中的信息解答下列問(wèn)題.

1)植樹(shù)3株的人數(shù)為 ;

2)扇形統(tǒng)計(jì)圖中植樹(shù)為1株的扇形圓心角的度數(shù)為 ;

3)該班同學(xué)植樹(shù)株數(shù)的中位數(shù)是

4)小明以下方法計(jì)算出該班同學(xué)平均植樹(shù)的株數(shù)是:(1+2+3+4+5÷53(株),根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí)

判斷小明的計(jì)算是否正確,若不正確,請(qǐng)寫(xiě)出正確的算式,并計(jì)算出結(jié)果

查看答案和解析>>

同步練習(xí)冊(cè)答案