若直角三角形的三邊長分別為x,6,8,那么x的長為( 。
A、6B、8C、10D、以上答案均不對(duì)
分析:已知直角三角形的兩條邊,應(yīng)分情況進(jìn)行討論,(1)兩條邊長為直角邊,求斜邊長;(2)一條邊為斜邊長,一條邊為直角邊長,求另一直角邊.
解答:解:(1)當(dāng)6,8為直角邊長時(shí),斜邊x=
62+82
=10;

(2)當(dāng)8為斜邊長,6為直角邊長,另一直角邊長x=
82-62
=2
7

故x的長不確定.故選D.
點(diǎn)評(píng):本題應(yīng)分情況進(jìn)行討論,然后運(yùn)用勾股定理解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

清朝康熙皇帝是我國歷史上對(duì)數(shù)學(xué)很有興趣的帝王.近日,西安發(fā)現(xiàn)了他的數(shù)學(xué)專著,其中有一文《積求勾股法》,它對(duì)“三邊長為3、4、5的整數(shù)倍的直角三角形,已知面積求邊長”這一問題提出了解法:“若所設(shè)者為積數(shù)(面積),以積率六除之,平方開之得數(shù),再以勾股弦各率乘之,即得勾股弦之?dāng)?shù)”.用現(xiàn)在的數(shù)學(xué)語言表述是:“若直角三角形的三邊長分別為3、4、5的整數(shù)倍,設(shè)其面積為S,則第一步:
S
6
=m;第二步:
m
=k;第三步:分別用3、4、5乘k,得三邊長”.
(1)當(dāng)面積S等于150時(shí),請(qǐng)用康熙的“積求勾股法”求出這個(gè)直角三角形的三邊長;
(2)你能證明“積求勾股法”的正確性嗎請(qǐng)寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若直角三角形的三邊長分別為2,4,x,則x的可能值有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若直角三角形的三邊長為6,8,m,則m2的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若直角三角形的三邊長分別為3、4、x,則x的所有可能值為
5或
7
5或
7

查看答案和解析>>

同步練習(xí)冊(cè)答案