【題目】甲、乙兩人開(kāi)車(chē)勻速?gòu)耐坏攸c(diǎn)到距離出發(fā)地480千米處的景點(diǎn)旅游,甲出發(fā)半小時(shí)后,乙以每小時(shí)80千米的速度沿同一路線(xiàn)行駛,兩車(chē)分別到達(dá)目的地后停止.甲、乙兩車(chē)之間的距離y(千米)與甲車(chē)行駛的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)甲行駛的速度是 千米/小時(shí).
(2)求乙車(chē)追上甲車(chē)后,y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
(3)求甲車(chē)出發(fā)多長(zhǎng)時(shí)間兩車(chē)相距75千米.
【答案】(1)60;(2)解析式為y=20x﹣40(2≤x≤6.5);(3)甲車(chē)出發(fā)小時(shí)或小時(shí)兩車(chē)相距75千米.
【解析】
(1)根據(jù)題意結(jié)合圖象列式計(jì)算即可;
(2)分別求出相應(yīng)線(xiàn)段的兩個(gè)端點(diǎn)的坐標(biāo),再運(yùn)用待定系數(shù)法解答即可;
(3)分兩種情況討論:將x=75代入到AB的解析式中,求出一個(gè)值,另一種情況是乙停止運(yùn)動(dòng)了,兩車(chē)還相距75km.
解:(1)甲行駛的速度為:30÷0.5=60(千米/小時(shí)),
故答案為:60.
(2)如圖所示:
設(shè)甲出發(fā)x小時(shí)后被乙追上,根據(jù)題意得:
60x=80(x﹣0.5),
解得x=2,
即甲出發(fā)2小時(shí)后被乙追上,
∴點(diǎn)A的坐標(biāo)為(2,0),
480÷80+0.5=6.5(時(shí)),
即點(diǎn)B的坐標(biāo)為(6.5,90),
設(shè)AB的解析式為y=kx+b,由點(diǎn)A,B的坐標(biāo)可得:
解得
所以AB的解析式為y=20x﹣40(2≤x≤6.5);
(3)根據(jù)題意得20x﹣40=75或60x=480﹣75,
解得x=或
答:甲車(chē)出發(fā)小時(shí)或小時(shí)兩車(chē)相距75千米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,D是AC中點(diǎn),直線(xiàn)OD與⊙O相交于E,F兩點(diǎn),P是⊙O外一點(diǎn),P在直線(xiàn)OD上,連接PA,PC,AF,且滿(mǎn)足∠PCA=∠ABC.
(1)求證:PA是⊙O的切線(xiàn);
(2)證明:;
(3)若BC=8,tan∠AFP=,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)與軸交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).垂直于軸的直線(xiàn)與拋物線(xiàn)交于點(diǎn),,與直線(xiàn)交于點(diǎn),若,記,則的取值范圍為( )
A.5<s<6B.6<s<7C.7<s<8D.8<s<9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的邊BC在x軸上,頂點(diǎn)A在y軸的正半軸上,OA=2,OB=1,OC=4.
(1)求過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)M是x軸上的動(dòng)點(diǎn),試問(wèn):在平面直角坐標(biāo)系中,是否存在點(diǎn)N,使得以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是菱形?若存在,直接寫(xiě)出點(diǎn)N的坐標(biāo);若不存在,說(shuō)明理由;
(3)若拋物線(xiàn)對(duì)稱(chēng)軸交x軸于點(diǎn)P,在平面直角坐標(biāo)系中,是否存在點(diǎn)Q,使△PAQ是以PA為腰的等腰直角三角形?若存在,寫(xiě)出所有符合條件的點(diǎn)Q的坐標(biāo),選擇一種情況加以說(shuō)明;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AB上一點(diǎn),將△ADE沿DE翻折,點(diǎn)A恰好落在BC上,記為A1,折痕為DE.再將∠B沿EA1向內(nèi)翻折,點(diǎn)B恰好落在DE上,記為B1.若AD=1,則AB的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y1=mx2+4mx﹣5m(m≠0),一次函數(shù)y2=2x﹣2,有下列結(jié)論:
①當(dāng)x>﹣2時(shí),y隨x的增大而減;
②二次函數(shù)y1=mx2+4mx﹣5m(m≠0)的圖象與x軸交點(diǎn)的坐標(biāo)為(﹣5,0)和(1,0);
③當(dāng)m=1時(shí),y1≤y2;
④在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y2≤y1均成立,則m.
其中,正確結(jié)論的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ABC=90°,∠CAB=60°,點(diǎn)O(0,0),點(diǎn)A(1,0),點(diǎn)B(﹣1,0),點(diǎn)C在第二象限,點(diǎn)P(﹣2,).
(I)如圖①,求C點(diǎn)坐標(biāo)及∠PCB的大;
(II)將△ABC繞C點(diǎn)逆時(shí)針旋轉(zhuǎn)得到△MNC,點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)M,N,S為△PMN的面積.
①如圖②,當(dāng)點(diǎn)N落在邊CA上時(shí),求S的值;
②求S的取值范圍(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,半徑OC⊥AB于點(diǎn)O,點(diǎn)D是的中點(diǎn),連接CD、OD、BD.下列四個(gè)結(jié)論:①AC∥OD;②CD=BD;③△ODE∽△CAE;④∠ADC=∠BOD.其中正確結(jié)論的序號(hào)是( )
A.①②③④B.①②④C.②③D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與x軸交于點(diǎn),點(diǎn),與y軸交于點(diǎn)C,且過(guò)點(diǎn).點(diǎn)P、Q是拋物線(xiàn)上的動(dòng)點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)當(dāng)點(diǎn)P在直線(xiàn)OD下方時(shí),求面積的最大值.
(3)直線(xiàn)OQ與線(xiàn)段BC相交于點(diǎn)E,當(dāng)與相似時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com