【題目】如圖,是一塊破損的木板.
(1)請(qǐng)你設(shè)計(jì)一種方案,檢驗(yàn)?zāi)景宓膬蓷l直線(xiàn)邊緣 AB、CD 是否平行;
(2)若 AB∥CD,連接 BC,過(guò)點(diǎn) A 作 AM⊥BC 于 M,垂足為 M,畫(huà)出圖形,并寫(xiě)出∠BCD 與∠BAM 的數(shù)量關(guān)系.
【答案】(1)見(jiàn)解析;(2)∠BCD+∠BAM=90°.
【解析】
(1)根據(jù)平行線(xiàn)的判定即可得;
(2)根據(jù)題意作圖即可得,再利用平行線(xiàn)的性質(zhì)與直角三角形兩銳角互余可得答案.
(1)根據(jù)同位角相等,兩直線(xiàn)平行,可以畫(huà)一條直線(xiàn)截線(xiàn)段 AB 與CD,測(cè)量一對(duì)同位角,如果相等,則 AB∥CD,反之,則不平行.
(2)如圖所示:
∵AB∥CD,
∴∠BCD=∠ABC,
∵AM⊥BC,
∴∠ABC+∠BAM=90°, 則∠BCD+∠BAM=90°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖示,AB∥CD,且點(diǎn)E在射線(xiàn)AB與CD之間,請(qǐng)說(shuō)明∠AEC=∠A+∠C的理由.
(2)現(xiàn)在如圖b示,仍有AB∥CD,但點(diǎn)E在AB與CD的上方,①請(qǐng)嘗試探索∠1,∠2,∠E三者的數(shù)量關(guān)系. ②請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB、CD相交于點(diǎn)O,OE是∠AOD的平分線(xiàn),若∠AOC=60°,OF⊥OE.
(1)判斷OF把∠AOC所分成的兩個(gè)角的大小關(guān)系并證明你的結(jié)論;
(2)求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B、C、D分別在正方形網(wǎng)格的格點(diǎn)上,其中A點(diǎn)的坐標(biāo)為(﹣1,5),B點(diǎn)的坐標(biāo)為(3,3),小明發(fā)現(xiàn),線(xiàn)段AB與線(xiàn)段CD存在一種特殊關(guān)系,即其中一條線(xiàn)段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線(xiàn)段,則這個(gè)旋轉(zhuǎn)中心的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程變形正確的是( )
A. 方程3x-2=2x+1移項(xiàng),得3x-2x=-1+2
B. 方程3-x=2-5(x-1)去括號(hào),得3-x=2-5x-1
C. 方程=1可化為3x=6
D. 方程x=-系數(shù)化為1,得x=-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)按要求分類(lèi).
﹣2,5,,0,﹣3.4,﹣21,π,,3.7,15%;
正數(shù)集合:{_____…},
負(fù)整數(shù)集合:{_____…},
分?jǐn)?shù)集合:{_____…}
非正數(shù)集合:{_____…}
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx﹣k與反比例函數(shù) 在同一直角坐標(biāo)系中的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,⊙O過(guò)BC的中點(diǎn)D,且DE⊥AC于點(diǎn)E.
(1)試判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若∠C=30°,CE=6,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com