【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,P是△ABC內(nèi)一點(diǎn),且PA=3,PB=1,PC= CD=2,CD⊥CP,求∠BPC的度數(shù)
【答案】135°
【解析】試題分析:根據(jù)同角的余角相等求出∠ACP=∠BCD,再利用“邊角邊”證明△ACP和△BCD全等,判斷出△PCD是等腰直角三角形,再根據(jù)全等三角形對(duì)應(yīng)邊相等可得AP=BD,然后利用勾股定理逆定理判斷出△BPD是直角三角形,∠BPD=90°,再根據(jù)∠BPC=∠BPD+∠CPD代入數(shù)據(jù)計(jì)算即可得解.
試題解析:
解:連接BD.
∵CD⊥CP,CP=CD=2,
∴△CPD為等腰直角三角形.
∴∠CPD=45°.
∵∠ACP+∠BCP=∠BCP+∠BCD=90°,
∴∠ACP=∠BCD.
∵CA=CB,
∴△CAP≌△CBD(SAS).
∴DB=PA=3.
在Rt△CPD中,DP2=CP2+CD2=22+22=8.
又∵PB=1,DB2=9,
∴DB2=DP2+PB2=8+1=9.
∴∠DPB=90°.
∴∠CPB=∠CPD+∠DPB=45°+90°=135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)(- 5)+ 6
(2)(+21)+(-31)
(3)(- 5.2 ) + ( - 1.2 )
(4)(﹣3)+7+(﹣6)+(﹣7)
(5)(- 20 ) +(-14)+(-28)+16
(6)5.6+(﹣0.9)+4.4+(﹣8.1)
(7)30 + 15+(-7)+(-15)
(8).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是( )
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃購買籃球、排球共20個(gè),購買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購買3個(gè)籃球的費(fèi)用與購買5個(gè)排球的費(fèi)用相同。
(1)籃球和排球的單價(jià)各是多少元?
(2)若購買籃球不少于8個(gè),所需費(fèi)用總額不超過800元.請(qǐng)你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小正方形的邊長(zhǎng)都是1.A、B、C三點(diǎn)都在格點(diǎn)上.
(1)請(qǐng)你以格線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,使A、B兩點(diǎn)的坐標(biāo)分別為A(﹣2,3),B(﹣3,1),并寫出C點(diǎn)坐標(biāo);
(2)連接AB、BC、CA得△ABC,將△ABC向右平移4個(gè)單位,畫出平移后的△A1B1C1;
(3)將△A1B1C1繞點(diǎn)B1按順時(shí)針方向旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B1C2 , 并求出在旋轉(zhuǎn)過程中線段A1B1所掃過的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形且AB=AC,BD是⊙O的直徑,過點(diǎn)A做AP∥BC交DB的延長(zhǎng)線于點(diǎn)P,連接AD.
(1)求證:AP是⊙O的切線;
(2)若⊙O的半徑是2,cos∠ABC= ,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△PAB的邊PA、PB上分別取點(diǎn)C、D,連接CD使CD∥AB.將△PCD繞點(diǎn)P按逆時(shí)針方向旋轉(zhuǎn)得到△PC′D′(∠APC′<∠APB),連接AC′、BD′.
(1)如圖1, 若∠APB=90°,PA=PB,求證:AC′=BD′;AC′⊥BD′.
(2)在圖1中,連接AD′、BC′,分別取AB、AD′、C′D′、BC′的中點(diǎn)E、F、G、H,順次連接E、F、G、H得到四邊形EFGH.請(qǐng)判斷四邊形EFGH的形狀,并說明理由.
(3)①如圖2, 若改變(1)中∠APB的大小,使0°<∠APB<90°,其他條件不變,重復(fù)(2)中操作.請(qǐng)你直接判斷四邊形EFGH的形狀.
②如圖3,若改變(1)中PA、PB的大小關(guān)系,使PA<PB,其他條件不變,重復(fù)(2)中操作,請(qǐng)你直接判斷是四邊形EFGH的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)部統(tǒng)計(jì)了15名工人某月的加工零件數(shù):
每人加工零件數(shù) | 540 | 450 | 300 | 240 | 210 | 120 |
人數(shù) | 1 | 1 | 2 | 6 | 3 | 2 |
(1)求出這15人該月加工零件數(shù)的平均數(shù)并直接寫出中位數(shù)和眾數(shù);
(2)若生產(chǎn)部領(lǐng)導(dǎo)把每位工人的月加工零件數(shù)定為260件,你認(rèn)為合理否,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位計(jì)劃用3天時(shí)間進(jìn)行設(shè)備檢修,安排小王,小李,小趙三位工程師各帶班一天,帶班順序是隨機(jī)確定的.
(1)請(qǐng)你寫出三天帶班順序的所有可能的結(jié)果;
(2)求小李和小趙恰好相鄰的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com