【題目】如圖,在平面直角坐標系xOy中,直線x軸正半軸于點A,交y軸負半軸于點B,點C在線段OA上,將沿直線BC翻折,點Ay軸上的點D(0,4)恰好重合.

(1)求直線AB的表達式.

(2)已知點E(0,3),點P是直線BC上的一個動點(點P不與點B重合),連接PD,PE,當PDE的周長取得最小值時,求點P的坐標。

(3)在坐標軸上是否存在一點H,使得HABABC的面積相等?若存在,求出滿足條件的點H的坐標;若不存在,請說明理由。

【答案】(1) ;(2)P();(3)存在這樣的H點使之成立;,

【解析】

(1)根據(jù)翻折求出點A的坐標,代入即可求得;

(2)求出直線AE和直線BC的解析式,聯(lián)立可求出點P的坐標;

(3)分兩種情況,當點Hx軸上和在y軸上分析.

(1) 對于直線,

x=0,y=-6,

又∵D(0,4),

BD=10,

由翻折知AB=BD=10,

根據(jù)勾股定理得OA===8,

A(8,0),

A(8,0)代入k=,

y=

(2)過點DBC的對稱點A(8,0),

E(0,3) ,

∴直線AE的解析式為y=-x+3,

A,D關(guān)于BC對稱,

OP=OP,PDE的周長=DE+DP+EP,

設(shè)OC=x,CD=CA=8-x,

RtDOC,x+4=(8-x),解得x=3,

C(3,0)

C(3,0),B(0,-6),

∴直線BC的解析式為y=2x-6,

聯(lián)立,解得,

P();

(3) 存在這樣的H點使之成立,

=×AC×BO=×5×6=15,

∴當點Hx軸上時,;

當點Hy軸上時,設(shè)H(0,a),

=a+6·8=15,a=--,

∴綜上,,,.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABCD,∠1=2,∠3=4

1)求證:ADBE;

2)若∠B=3=22,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一束光線在兩面玻璃墻內(nèi)進行傳播,路徑為A→B→C→D,根據(jù)光的反射性質(zhì),∠1=∠2,∠3=∠4,若∠2+∠390°,試探究直線ABCD是否平行?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某科技有限公司準備購進AB兩種機器人來搬運化工材料,已知購進A種機器人2個和B種機器人3個共需16萬元,購進A種機器人3個和B種機器人2個共需14萬元,請解答下列問題:

(1)求A、B兩種機器人每個的進價;

(2)已知該公司購買B種機器人的個數(shù)比購買A種機器人的個數(shù)的2倍多4個,如果需要購買A、B兩種機器人的總個數(shù)不少于28個,且該公司購買的A、B兩種機器人的總費用不超過106萬元,那么該公司有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】震災(zāi)無情人有情.民政局將全市為四川受災(zāi)地區(qū)捐贈的物資打包成件,其中帳篷和食品共320件,帳篷比食品多80件

(1)求打包成件的帳篷和食品各多少件?

(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性這批帳篷和食品全部運往受災(zāi)地區(qū).已知甲種貨車最多可裝帳篷40件和食品10件,乙種貨車最多可裝帳篷和食品各20件.民政局安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來.

(3)在第(2)問的條件下,如果甲種貨車每輛付運輸費4000元,乙種貨車每輛付運輸費3600元.民政局應(yīng)選擇哪種方案可使運輸費最少?最少運輸費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某市有一塊長為(2a+b)米,寬為(a+b)米的長方形地塊,規(guī)劃部門計劃將陰影部分進行綠化,中間將修建一座雕像.

(1)試用含a,b的代數(shù)式表示綠化的面積是多少平方米?

(2)若a=3,b=2,請求出綠化面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小東在教學樓距地面9米高的窗口C處,測得正前方旗桿頂部A點的仰角為37°,旗桿底部B點的俯角為45°,升旗時,國旗上端懸掛在距地面2.25米處,若國旗隨國歌聲冉冉升起,并在國歌播放45秒結(jié)束時到達旗桿頂端,則國旗應(yīng)以多少米/秒的速度勻速上升?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中,裝有2個紅球和1個白球,這些球除了顏色外都相同.如果第一次隨機摸出一個小球(不放回),充分攪勻后,第二次再從剩余的兩球中隨機摸出一個小球,求兩次都摸到紅球的概率.(用樹狀圖或列表法求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有大小兩種貨車,2輛大貨車與3輛小貨車一次可以運貨15.5t;5輛大貨車與6輛小貨車一次可以運貨35t
(1)每輛大貨車和每輛小貨車一次各可以運貨多少?
(2)現(xiàn)在租用這兩種火車共10輛,要求一次運輸貨物不低于30t,則大貨車至少租幾輛?

查看答案和解析>>

同步練習冊答案