【題目】如圖,在平面直角坐標(biāo)系中,直線l:與x軸交于點(diǎn)B1,以OB1為邊長作等邊△A1OB1,過點(diǎn)A1作A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長作等邊△A2A1B2,過點(diǎn)A2作A2B3平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長作等邊△A3A2B3,…,則點(diǎn)A2 018的橫坐標(biāo)是_____________.
【答案】
【解析】
先根據(jù)直線l:與x軸交于點(diǎn)B1,可得B1(1,0),OB1=1,∠OB1D=30°,再過A1作A1A⊥OB1于A,過A2作A2B⊥A1B2于B,過A3作A3C⊥A2B3于C,根據(jù)等邊三角形的性質(zhì)以及含30°角的直角三角形的性質(zhì),分別求得A1的橫坐標(biāo)為,A2的橫坐標(biāo)為,A3的橫坐標(biāo)為,An的橫坐標(biāo)為,據(jù)此可得點(diǎn)A2018的橫坐標(biāo).
解:由直線l:與x軸交于點(diǎn)B1,可得B1(1,0),D(0,),
∴OB1=1,∠OB1D=30°,
如圖所示,過A1作A1A⊥OB1于A,則OA=,
即A1的橫坐標(biāo)為,
由題意可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,
∴∠A1B1B2=90°,
∴A1B2=2A1B1=2,
過A2作A2B⊥A1B2于B,則A1B=,
即A2的橫坐標(biāo)為,
過A3作A3C⊥A2B3于C,
同理可得,A2B3=2A2B2=4,A2C=
即A3的橫坐標(biāo)為,
同理可得,A4的橫坐標(biāo)為,
由此可得,An的橫坐標(biāo)為,
∴點(diǎn)A2018的橫坐標(biāo)是,
故答案為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,為斜邊上的中線;在中,,,且.連接,點(diǎn)、點(diǎn)分別為線段的中點(diǎn),連接.
如圖1,當(dāng)點(diǎn)在內(nèi)部時(shí),求證:
如圖2,當(dāng)點(diǎn)在外部時(shí),連接,判斷與的數(shù)量關(guān)系,并加以證明;
將圖1中的繞點(diǎn)旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,請(qǐng)直接回答:
①中的與的數(shù)量關(guān)系是否發(fā)生了變化?
②若,當(dāng)點(diǎn)三點(diǎn)在同一條直線上時(shí),請(qǐng)直摟寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸,y軸分別交于A,B兩點(diǎn),與反比例函數(shù)y2=的圖象分別交于C,D兩點(diǎn),且D(2,-3),OA=2.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)請(qǐng)直接寫出不等式k1x+b-≥0的解集;
(3)動(dòng)點(diǎn)P(0,m)在y軸上運(yùn)動(dòng),當(dāng)|PC-PD|的值最大時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某種商品的進(jìn)價(jià)為每件30元該商品在第x天的售價(jià)是y1(單位:元/件),銷量是y2(單位:件),且滿足關(guān)系式,y2=200﹣2x,設(shè)每天銷售該商品的利潤為w元.
(1)寫出w與x的函數(shù)關(guān)系式;
(2)銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大?最大利潤是多少?
(3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,研究發(fā)現(xiàn),科學(xué)使用電腦時(shí),望向熒光屏幕畫面的“視線角” 約為,而當(dāng)手指接觸鍵盤時(shí),肘部形成的“手肘角”約為.圖是其側(cè)面簡化示意圖,其中視線水平,且與屏幕垂直.
()若屏幕上下寬,科學(xué)使用電腦時(shí),求眼睛與屏幕的最短距離的長.
()若肩膀到水平地面的距離,上臂,下臂水平放置在鍵盤上,其到地面的距離,請(qǐng)判斷此時(shí)是否符合科學(xué)要求的?
(參考數(shù)據(jù): , , , ,所有結(jié)果精確到個(gè)位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)D在BA的延長線上,點(diǎn)E在BC上,DE=DC,點(diǎn)F是DE與AC的交點(diǎn).
(1)求證:∠BDE=∠ACD
(2)若DE=2DF,過點(diǎn)E作EG∥AC交AB于點(diǎn)G,求證:AB=2AG;
(3)將“點(diǎn)D在BA的延長線上,點(diǎn)E在BC上” 改為“點(diǎn)D在AB上,點(diǎn)E在CB的延長線上”,“點(diǎn)F是DE與AC的交點(diǎn)改為 “點(diǎn)F是ED的延長線與AC的交點(diǎn)”,其它條件不變,如圖.
① 求證:;
② 若DE=4DF,請(qǐng)直接寫出S△ABC∶S△DEC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某人在點(diǎn)A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測得∠DEB=60°,求C、D兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙的直徑,為圓周上兩點(diǎn),且四邊形是平行四邊形,直線切⊙于點(diǎn),分別交的延長線于點(diǎn),與交于點(diǎn).
(1)求證:;
(2)求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com