在△ABC中,∠C=90°,AC=4cm,AB=7cm,AD平分∠BAC,DE⊥AB于E.
①求證:△ACD≌△AED;
②求EB的長.

(1)證明:∵∠C=90°,
∴AC⊥BC,
∵DE⊥AB,AD平分∠BAC,
∴CD=DE,
∵AD=AD,
∴△ACD≌△AED(HL).

(2)解:∵△ACD≌△AED,
∴AC=AE=4cm,
∵AB=7cm,
∴BE=AB-AE=3cm,
答:BE的長是3cm.
分析:(1)根據(jù)角平分線性質(zhì)得出CD=DE,根據(jù)全等三角形的判定HL即可推出答案;
(2)根據(jù)全等三角形的性質(zhì)求出AE的長,根據(jù)BE=AB-AE即可求出答案.
點評:本題主要考查對角平分線性質(zhì),全等三角形的性質(zhì)和判定等知識點的理解和掌握,能證出CD=DE和△ACD≌△AED是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網(wǎng)
(1)如圖1.連接BE、CD,BE與CD交于點O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點F.DF與EF相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點D,交AC于點E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為(  )
A、
2
B、
3
C、2
D、以上都不對

查看答案和解析>>

同步練習(xí)冊答案