【題目】關于的分式方程有整數(shù)解,關于的不等式組無解,所有滿足條件的整數(shù)的和為(

A.2B.-6C.-3D.4

【答案】A

【解析】

求出分式方程的解,由分式方程有整數(shù)解,得到整數(shù)a的取值;不等式組變形后,根據(jù)不等式組無解,確定出a的范圍,進而求出a的值,得到所有滿足條件的整數(shù)a的和.

分式方程去分母得:

1ax+4(x-3)=5,

解得:x=

x3,

3,解得:a2

由分式方程的解為整數(shù),且a為整數(shù),得到

4-a=±1,±2,±3,±6,

解得:a=35,26,71,10-2

a2,

a=-21,3,56,710

解不等式組,得到:

∵不等式組無解,

,解得:a3

∴滿足條件的整數(shù)a的值為﹣21,3

∴整數(shù)a之和是-2+1+3=2

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在慈善一日捐活動中,學校團總支為了了解本校學生的捐款情況,隨機抽取了50名學生的捐款數(shù)進行了統(tǒng)計,并繪制成下面的統(tǒng)計圖.

1)這50名同學捐款的眾數(shù)為     元,中位數(shù)為     元;

2)該校共有600名學生參與捐款,請估計該校學生的捐款總數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E為對角線AC上一點,CE=CD,連接EB、ED,延長BEAD于點F.求證:DF2=EFBF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市旅游景區(qū)有A,BC,DE等著名景點,該市旅游部門統(tǒng)計繪制出2018年春節(jié)期間旅游情況統(tǒng)計圖(如圖),根據(jù)圖中信息解答下列問題:

(1)2018年春節(jié)期間,該市A,B,CD,E這五個景點共接待游客   萬人,扇形統(tǒng)計圖中E景點所對應的圓心角的度數(shù)是   ,并補全條形統(tǒng)計圖.

(2)甲乙兩個旅行團在A,BD三個景點中隨機選擇一個,這兩個旅行團選中同一景點的概率是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市計劃購進甲、乙兩種商品,兩種商品的進價、售價如下表:

商品

進價(元/件)

售價(元/件)

200

100

若用360元購進甲種商品的件數(shù)與用180元購進乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進價是多少元?

2)若超市銷售甲、乙兩種商品共50件,其中銷售甲種商品為件(),設銷售完50件甲、乙兩種商品的總利潤為元,求之間的函數(shù)關系式,并求出的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八年級數(shù)學教師邱龍從家里出發(fā),駕車去離家的風景區(qū)度假,出發(fā)一小時內(nèi)按原計劃的速度勻速行駛,一小時后以原速的1.5倍勻速行駛,并提前40分鐘到達風景區(qū);第二天返回時以去時原計劃速度的1.2倍行駛回到家里.那么來回行駛時間相差_________分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中直線y=x﹣2與y軸相交于點A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點B(m,2).

(1)求反比例函數(shù)的關系式;

(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點C,且ABC的面積為18,求平移后的直線的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在一個不透明的口袋中裝有3個紅球和一個白球,它們除了顏色外其他都相同。

(1)若從這個口袋中隨機地取出1個球,則“取出的球恰好是白球”的概率是_______;

(2)若從這個口袋中隨機地一次性取出2個球,再問問先用樹狀圖或者列表的方法得到所有的結果,然后再求“取出的2個球恰好都是紅球”的概率是多少?

(3)若往這個口袋中又加入了與袋中紅球一樣的若干個紅球,在攪勻袋子之后,進行下面隨機試驗:隨機地抽取1個球,記錄它的顏色后又放回口袋中,......,我們?nèi)绱撕芏啻沃貜妥鲞@個試驗后發(fā)現(xiàn),取出紅球的頻率一直穩(wěn)定在95%附近,那么請你求一下大約又加入了多少個紅球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BFCG分別是的高線,點DE分別是BC,GF的中點,連結DF,DGDE,

1)求證:是等腰三角形.

2)若,求DE的長.

查看答案和解析>>

同步練習冊答案