【題目】如圖,點A在雙曲線y= 上,點B在雙曲線y= (k≠0)上,AB∥x軸,過點A作AD⊥x軸于D.連接OB,與AD相交于點C,若AC=2CD,則k的值為( )
A.6
B.9
C.10
D.12
【答案】D
【解析】解:過點B作BE⊥x軸于E,延長線段BA,交y軸于F,
∵AB∥x軸,
∴AF⊥y軸,
∴四邊形AFOD是矩形,四邊形OEBF是矩形,
∴AF=OD,BF=OE,
∴AB=DE,
∵點A在雙曲線y= 上,
∴S矩形AFOD=4,
同理S矩形OEBF=k,
∵AB∥OD,
∴ = = ,
∴AB=2OD,
∴DE=2OD,
∴S矩形OEBF=3S矩形AFOD=12,
∴k=12.
故選D.
過點B作BE⊥x軸于E,延長線段BA,交y軸于F,得出四邊形AFOD是矩形,四邊形OEBF是矩形,得出S矩形AFOD=4,S矩形OEBF=k,根據(jù)平行線分線段成比例定理證得AB=2OD,即OE=3OD,即可求得矩形OEBF的面積,根據(jù)反比例函數(shù)系數(shù)k的幾何意義即可求得k的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】花粉的質(zhì)量很小,一粒某種植物花粉的質(zhì)量約為0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科學(xué)記數(shù)法表示為
A. 3.7×10﹣5克 B. 3.7×10﹣6克 C. 37×10﹣7克 D. 3.7×10﹣8克
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB,CD被直線AC所截,AB∥CD,E是平面內(nèi)任意一點(點E不在直線AB,CD,AC上),設(shè)∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度數(shù)可能是( )
A. ①②③ B. ①②④C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調(diào)查中現(xiàn):從零時起,井內(nèi)空氣中CO的濃度達(dá)到4mg/L,此后濃度呈直線型增加,在第7小時達(dá)到最高值46mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降.如下圖,根據(jù)題中相關(guān)信息回答下列問題:
(1)求爆炸前后空氣中CO濃度y與時間x的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量取值范圍;
(2)當(dāng)空氣中的CO濃度達(dá)到34mg/L時,井下3km的礦工接到自動報警信號,這時他們至少要以多少km/h的速度撤離才能在爆炸前逃生?
(3)礦工只有在空氣中的CO濃度降到4mg/L及以下時,才能回到礦井開展生產(chǎn)自救,求礦工至少在爆炸后多少小時才能下井.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔賽跑”的故事同學(xué)們都非常熟悉,圖中的線段OD和折線OABC表示“龜兔賽跑”時路程與時間的關(guān)系,請你根據(jù)圖中給出的信息,解決下列問題.
(1)填空:折線OABC表示賽跑過程中 的路程與時間的關(guān)系,線段OD表示賽跑過程中 的路程與時間的關(guān)系.賽跑的全程是 米.
(2)兔子在起初每分鐘跑 米,烏龜每分鐘爬 米.
(3)烏龜用了 分鐘追上了正在睡覺的兔子.
(4)兔子醒來,以48千米/時的速度跑向終點,結(jié)果還是比烏龜晚到了0.5分鐘,請你算算兔子中間停下睡覺用了多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AD,AE分別是△ADC和△ABC的高和中線,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.試求:
(1)AD的長;
(2)△ABE的面積;
(3)△ACE和△ABE的周長的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD、BE分別是△ABC的高線和角平分線,點F在CA的延長線上,F(xiàn)H⊥BE交BD于點G,交BC于點H.下列結(jié)論:①∠DBE=∠F;②∠BEF=(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=(∠BAC﹣∠C);其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2﹣2x+m的圖象與x軸的一個交點的坐標(biāo)是(﹣1,0),則圖象與x軸的另一個交點的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC水平向右平移4個單位得到△A′B′C′.
(1)補全△A′B′C′,利用網(wǎng)格點和直尺畫圖;
(2)圖中AC與A1C1的關(guān)系是:______;
(3)畫出△ABC中AB邊上的中線CE;
(4)平移過程中,線段AC掃過的面積是_________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com