x是怎樣的實數(shù)時,式子
-x2
在實數(shù)范圍內有意義.答:
 
分析:先根據(jù)二次根式的性質,被開方數(shù)大于等于0,得出-x2≥0,即x2≤0,再由乘方的性質,任何一個數(shù)的偶次方必定是一個非負數(shù),可知x2≥0,從而得出x=0.
解答:解:由題意,得-x2≥0,
∴x2≤0,
又∵x2≥0,
∴x=0.
故當x=0時,式子
-x2
在實數(shù)范圍內有意義.
點評:本題考查的知識點為:二次根式的被開方數(shù)是非負數(shù);任何一個數(shù)的偶次方是非負數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•自貢)已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少
1
a
,縱坐標增大
1
a
分別作為點A的橫、縱坐標;把頂點的橫坐標增加
1
a
,縱坐標增加
1
a
分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:044

x是怎樣的實數(shù)時,下列名式在實數(shù)范圍內有意義?

(1);
(2);
(3);
(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少數(shù)學公式,縱坐標增大數(shù)學公式分別作為點A的橫、縱坐標;把頂點的橫坐標增加數(shù)學公式,縱坐標增加數(shù)學公式分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源:四川省中考真題 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少,縱坐標增大分別作為點A的橫、縱坐標;把頂點的橫坐標增加,縱坐標增加分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上。
(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明。

查看答案和解析>>

科目:初中數(shù)學 來源:2011年四川省自貢市中考數(shù)學試卷(解析版) 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少,縱坐標增大分別作為點A的橫、縱坐標;把頂點的橫坐標增加,縱坐標增加分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明.

查看答案和解析>>

同步練習冊答案