已知:如圖,CD=CA,BC=EC,∠BCE=∠ACD,
求證:DE=AB.
分析:求出∠BCA=∠ECD,根據(jù)SAS證△BCA≌△ECD,推出DE=AB即可.
解答:證明:∵∠BCE=∠ACD,
∴∠BCE+∠ECA=∠ACD+∠ECA,
∴∠BCA=∠ECD,
在△BCA和△ECD中
BC=EC
∠BCA=∠ECD
CA=CD
,
∴△BCA≌△ECD(SAS),
∴DE=AB.
點(diǎn)評(píng):本題考查了全等三角形的性質(zhì)和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、已知:如圖,CD⊥AB,BE⊥AC,垂足分別為D、E,BE、CD相交于O點(diǎn),∠1=∠2.圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知,如圖,CD平分∠ACB,AC∥DE,CD∥EF,求證:EF平分∠DEB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,CD⊥AB于點(diǎn)D,BE⊥AC于點(diǎn)E,BE與CD交于點(diǎn)O,且BD=CE.
求證:AO平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,CD⊥AB于點(diǎn)D,BE⊥AC于點(diǎn)E,BE、CD交于點(diǎn)O,且AO平分∠BAC.那么OB與OC相等嗎?談?wù)勀愕睦碛桑?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖AB∥CD,CE平分∠ACD,∠A=110°,則∠ECD等于
35
35
度.

查看答案和解析>>

同步練習(xí)冊(cè)答案