(2012•房山區(qū)二模)把代數(shù)式m2+4m-1化為(m+a)2+b的形式,其中a、b為常數(shù),則a+b=
-3
-3
分析:根據(jù)完全平方公式的結(jié)構(gòu),按照要求可得m2+4m-1=(m+2)2-5,可知a=2,b=-5,則a+b=-3.
解答:解:∵m2+4m-1=(m+2)2-5,
∴a=2,b=-5,
∴a+b=-3.
故答案為:-3.
點評:本題主要考查完全平方公式的變形,熟記公式結(jié)構(gòu)是解題的關(guān)鍵.完全平方公式:(a±b)2=a2±2ab+b2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)如圖1,已知平行四邊形ABCD中,對角線AC,BD交于點O,E是BD延長線上的點,且△ACE是等邊三角形.
(1)求證:四邊形ABCD是菱形;
(2)如圖2,若∠AED=2∠EAD,AC=6.求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)若一個正多邊形的每個內(nèi)角都為135°,則這個正多邊形的邊數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)下列運算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)過正方體中有公共頂點的三條棱的中點切出一個平面,形成如圖幾何體,其正確展開圖為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)探究問題:
已知AD、BE分別為△ABC 的邊BC、AC上的中線,且AD、BE交于點O.
(1)△ABC為等邊三角形,如圖1,則AO:OD=
2:1
2:1
;
(2)當小明做完(1)問后繼續(xù)探究發(fā)現(xiàn),若△ABC為一般三角形(如圖2),(1)中的結(jié)論仍成立,請你給予證明.
(3)運用上述探究的結(jié)果,解決下列問題:
如圖3,在△ABC中,點E是邊AC的中點,AD平分∠BAC,AD⊥BE于點F,若AD=BE=4.求:△ABC的周長.

查看答案和解析>>

同步練習冊答案