如圖,AB是⊙O的直徑,C為⊙O上一點,AD和過C點的切線互相垂直,垂足為D。
(1)求證:AC平分∠DAB;
(2)連接BC,證明∠ACD=∠ABC;
(3)若AB=12cm,∠ABC=60°,求CD的長。
(1)證明見解析;(2)證明見解析;(3)
【解析】
試題分析:(1)連接OC,易得OC∥AD,根據(jù)平行線的性質就可以得到∠DAC=∠ACO,再根據(jù)OA=OC得到∠ACO=∠CAO,就可以證出結論.
(2)連接OC,易得OC∥AD,根據(jù)平行線的性質就可以得到∠DAC=∠ACO,再根據(jù)OA=OC得到∠ACO=∠CAO,因為∠DAC+∠ACD=90°,∠ABC+∠CAO=90°,所以∠ACD=∠ABC;
(3)在直角△ABC中,利用三角函數(shù)求得AC的長,然后在直角△CAD中,利用三角函數(shù)即可求得CD的長.
試題解析:連接OC,
∵直線l與⊙O相切于點C,
∴OC⊥CD;
又∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO;
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB.
(2)∵直線l與⊙O相切于點C,
∴OC⊥CD;
又∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO;
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
∵∠DAC+∠ACD=90°,∠ABC+∠CAO=90°,
∴∠ACD=∠ABC;
(3)∵AB是⊙O的直徑,∴∠ACB=90°
∴直角△ABC中,AC=AB•sinA=12×=,∠BAC=30°
∴在直角△CBD中,∠CBD=∠BAC=30°,CD=AC=.
考點: 1.切線的性質;2. 圓周角定理.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047
已知如圖,AB是半圓直經,△ACD內接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com