二次函數(shù)y=2(x-5)2 +1圖象的頂點(diǎn)是          。
(5,1)

試題分析:二次函數(shù)的頂點(diǎn)式:y=a(x-h)2+k
故該二次函數(shù)的頂點(diǎn)是(5,1)
點(diǎn)評(píng):二次函數(shù)的解析式有三種形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù));(2)頂點(diǎn)式:y=a(x-h)2+k;(3)交點(diǎn)式(與x軸):y=a(x-x1)(x-x2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線y=x2+2 x-1的頂點(diǎn)坐標(biāo)是           .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線l:交y軸于點(diǎn)A.拋物線的圖象過(guò)點(diǎn)E(-1,0),并與直線l相交于A、B兩點(diǎn).

⑴ 求拋物線的解析式;
⑵ 設(shè)點(diǎn)P是拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAE的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);
⑶ 在x軸上是否存在點(diǎn)M,使得△MAB是直角三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線經(jīng)過(guò)點(diǎn)A(1,0),與y軸交于點(diǎn)B。

(1)求拋物線的解析式;
(2)P是y軸上一點(diǎn),且△PAB是以AB為腰的等腰三角形,請(qǐng)直接寫出P點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

把二次函數(shù)配方成頂點(diǎn)式為(     )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)“快樂(lè)購(gòu)”超市購(gòu)進(jìn)一批25元/千克的綠色食品,如果以30元/千克銷售,那么每天可售出400千克.由銷售經(jīng)驗(yàn)知,每天銷售量y(千克)與銷售單價(jià)x(元)(x≥30)存在如圖所示的一次函數(shù)關(guān)系式。

(1)試求出y與x的函數(shù)關(guān)系式;
(2)設(shè)“快樂(lè)購(gòu)”超市銷售該綠色食品每天獲得利潤(rùn)P元,當(dāng)銷售單價(jià)為何值時(shí),每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)根據(jù)市場(chǎng)調(diào)查,該綠色食品每天可獲利潤(rùn)不超過(guò)3080元,現(xiàn)該超市經(jīng)理要求每天利潤(rùn)不得低于3000元,請(qǐng)你幫助該超市確定綠色食品銷售單價(jià)x的范圍(直接寫出答案)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(﹣1,0),(3,0).對(duì)于下列命題:①;②a b c<0;③;④8a+c>0.其中正確的有 (   )
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖是二次函數(shù)的部分圖象,由圖象可知方程的解是________ ,___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)購(gòu)進(jìn)一批單價(jià)為16元的日用品.若按每件23元的價(jià)格銷售,每月能賣出270件;若按每件28元的價(jià)格銷售,每月能賣出120件;若規(guī)定售價(jià)不得低于23元,假定每月銷售件數(shù)y(件)與價(jià)格x(元/件)之間滿足一次函數(shù).
(1)試求y與x之間的函數(shù)關(guān)系式.
(2)在商品不積壓且不考慮其他因素的條件下,銷售價(jià)格定為多少時(shí),才能使每月的毛利潤(rùn)w最大?每月的最大毛利潤(rùn)為多少?
(3)若要使某月的毛利潤(rùn)為1800元,售價(jià)應(yīng)定為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案