【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,
(1)寫出A、B、C的坐標(biāo).
(2)以原點(diǎn)O為中心,將△ABC圍繞原點(diǎn)O逆時針旋轉(zhuǎn)180°得到△A1B1C1,畫出△A1B1C1.
(3)求(2)中C到C1經(jīng)過的路徑以及OB掃過的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們規(guī)定:點(diǎn)關(guān)于“的衍生點(diǎn)”,,其中為常數(shù)且,如:點(diǎn)(,)關(guān)于“的衍生點(diǎn)”,即,即.
(1)求點(diǎn)關(guān)于“的衍生點(diǎn)” 的坐標(biāo);
(2)若點(diǎn)關(guān)于“的衍生點(diǎn)” ,求點(diǎn)的坐標(biāo);
(3)若點(diǎn)在軸的正半軸上,點(diǎn)關(guān)于“的衍生點(diǎn)” ,點(diǎn)關(guān)于“的衍生點(diǎn)” ,且線段的長度不超過線段長度的一半,請問:是否存在值使得到軸的距離是到軸距離的倍?若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC 是ABCD 的一條對角線,BE⊥AC,DF⊥AC,垂足分別為 E,F.
(1)求證:△ADF≌△CBE;
(2)求證:四邊形 DFBE 是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點(diǎn)O,過點(diǎn)D作DE//AC,且DE:AC=1:2,連接CE、OE,連接AE交OD于點(diǎn)F.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下邊各式,你發(fā)現(xiàn)什么規(guī)律:將你猜想到的規(guī)律用只含有一個字母的等式表示出來__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動,點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動.
(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ中PQ的長度等于5cm?
(3)在(1)中,當(dāng)P,Q出發(fā)幾秒時,△PBQ有最大面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形的底邊長為6,面積是36,腰的垂直平分線分別交,邊于,點(diǎn),若點(diǎn)為邊的中點(diǎn),點(diǎn)為線段上一動點(diǎn),則周長的最小值____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線分別交x軸、y軸于A、B兩點(diǎn),直線BC與x軸交于點(diǎn),P是線段AB上的一個動點(diǎn)點(diǎn)P與A、B不重合.
(1)求直線BC所對應(yīng)的的函數(shù)表達(dá)式;
(2)設(shè)動點(diǎn)P的橫坐標(biāo)為t,的面積為S.
①求出S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
②在線段BC上存在點(diǎn)Q,使得四邊形COPQ是平行四邊形,求此時點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是正方形,點(diǎn)G是BC邊上任意一點(diǎn).DE⊥AG于點(diǎn)E,BF∥DE且交AG于點(diǎn)F.
(1)求證:AE=BF;
(2)如圖2,如果點(diǎn)G是BC延長線上一點(diǎn),其余條件不變,則線段AF、BF、EF有什么數(shù)量關(guān)系?請證明出你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com