【題目】如圖,直線MN與⊙O相切于點(diǎn)M,ME=EF且EF∥MN,則cos∠E=

【答案】
【解析】解:連接OM,OM的反向延長線交EF于點(diǎn)C,如圖,
∵直線MN與⊙O相切于點(diǎn)M,
∴OM⊥MN,
∵EF∥MN,
∴MC⊥EF,
∴CE=CF,
∴ME=MF,
而ME=EF,
∴ME=EF=MF,
∴△MEF為等邊三角形,
∴∠E=60°,
∴cos∠E=cos60°=
故答案為:
連接OM,OM的反向延長線交EF于點(diǎn)C,由直線MN與⊙O相切于點(diǎn)M,根據(jù)切線的性質(zhì)得OM⊥MN,而EF∥MN,根據(jù)平行線的性質(zhì)得到MC⊥EF,于是根據(jù)垂徑定理有CE=CF,再利用等腰三角形的判定得到ME=MF,易證得△MEF為等邊三角形,所以∠E=60°,然后根據(jù)特殊角的三角函數(shù)值求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是⊙O的內(nèi)接正三角形,弦EF經(jīng)過BC邊的中點(diǎn)D,且EF∥AB,若AB=8,則DE的長為(

A. +1
B.2 ﹣2
C.2 ﹣2
D. +1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園的一座石拱橋是圓弧形(劣。淇缍葹24米,拱的半徑為13米,則拱高為(
A.5米
B.8米
C.7米
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校九年級(jí)3班的一個(gè)學(xué)習(xí)小組進(jìn)行測量小山高度的實(shí)踐活動(dòng).部分同學(xué)在山腳點(diǎn)A測得山腰上一點(diǎn)D的仰角為30°,并測得AD的長度為180米;另一部分同學(xué)在山頂點(diǎn)B測得山腳點(diǎn)A的俯角為45°,山腰點(diǎn)D的俯角為60度.請(qǐng)你幫助他們計(jì)算出小山的高度BC.(計(jì)算過程和結(jié)果都不取近似值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】第一次模擬試后,數(shù)學(xué)科陳老師把一班的數(shù)學(xué)成績制成如圖的統(tǒng)計(jì)圖,并給了幾個(gè)信息:①前兩組的頻率和是0.14;②第一組的頻率是0.02;③自左到右第二、三、四組的頻數(shù)比為3:9:8,然后布置學(xué)生(也請(qǐng)你一起)結(jié)合統(tǒng)計(jì)圖完成下列問題:
(1)全班學(xué)生是多少人?
(2)成績不少于90分為優(yōu)秀,那么全班成績的優(yōu)秀率是多少?
(3)若不少于100分可以得到A+等級(jí),則小明得到A+的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)M是BC邊上的任一點(diǎn),連接AM并將線段AM繞M順時(shí)針旋轉(zhuǎn)90°得到線段MN,在CD邊上取點(diǎn)P使CP=BM,連接NP,BP.
(1)求證:四邊形BMNP是平行四邊形;
(2)線段MN與CD交于點(diǎn)Q,連接AQ,若△MCQ∽△AMQ,則BM與MC存在怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D在邊AB上,線段DC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),端點(diǎn)C恰巧落在邊AC上的點(diǎn)E處.如果 =m, =n.那么m與n滿足的關(guān)系式是:m=(用含n的代數(shù)式表示m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一條長為2014個(gè)單位長度且沒有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A﹣B﹣C﹣D﹣A…的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是( )

A.(﹣1,0)
B.(1,﹣2)
C.(1,1)
D.(﹣1,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩個(gè)二次函數(shù)圖象的頂點(diǎn)相同,開口大小相同,但開口方向相反,則稱這兩個(gè)二次函數(shù)為“對(duì)稱二次函數(shù)”.
(1)請(qǐng)寫出二次函數(shù)y=2(x﹣2)2+1的“對(duì)稱二次函數(shù)”;
(2)已知關(guān)于x的二次函數(shù)y1=x2﹣3x+1和y2=ax2+bx+c,若y1﹣y2與y1互為“對(duì)稱二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求出當(dāng)﹣3≤x≤3時(shí),y2的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案