(2011•自貢)有下列函數(shù):①y=-3x②y=x-1③y=-
1
x
(x>0)
④y=x2+2x+1,其中函數(shù)值y隨自變量x增大而增大的函數(shù)有( 。
分析:根據(jù)一次函數(shù),反比例函數(shù),二次函數(shù)的增減性,逐一判斷.
解答:解:①y=-3x為正比例函數(shù),k<0,故y隨著x的增大而減;
②y=x-1為一次函數(shù),k>0,故y隨著x增大而增大;
y=-
1
x
(x>0)
為反比例函數(shù),k<0,故當(dāng)x>0時,函數(shù)值在第四象限內(nèi)y隨x的增大而增大;
④y=x2+2x+1=(x+1)2為二次函數(shù),故當(dāng)圖象在對稱軸右側(cè),y隨著x的增大而增大;而在對稱軸左側(cè),y隨著x的增大而減。
只有②③符合題意.
故選C.
點評:本題綜合考查了二次函數(shù)、一次函數(shù)、反比例函數(shù)、正比例函數(shù)的增減性(單調(diào)性),應(yīng)熟練掌握其性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•自貢)已知A,B兩個口袋中都有6個分別標(biāo)有數(shù)字0,1,2,3,4,5的彩球,所有彩球除標(biāo)示的數(shù)字外沒有區(qū)別.甲、乙兩位同學(xué)分別從A,B兩個口袋中隨意摸出一個球.記甲摸出的球上數(shù)字為x,乙摸出的球上數(shù)字為y,數(shù)對(x,y)對應(yīng)平面直角坐標(biāo)系內(nèi)的點Q,則點Q落在以原點為圓心,半徑為
5
的圓上或圓內(nèi)的概率為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•自貢)如圖是4×4正方形網(wǎng)格,其中已有3個小方格涂成了黑色.現(xiàn)在要從其余13個白色小方格中選出一個也涂成黑色,使整個涂成黑色的圖形成為軸對稱圖形,這樣的白色小方格有
4
4
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•自貢)如圖,點B,C在∠SAF的兩邊上.且AB=AC.
(1)請按下列語句用尺規(guī)畫出圖形(不寫畫法,保留作圖痕跡).
①AN⊥BC,垂足為N;
②∠SBC的平分線交AN延長線于M;
③連接CM.
(2)該圖中有
3
3
對全等三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•自貢)已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標(biāo)減少
1
a
,縱坐標(biāo)增大
1
a
分別作為點A的橫、縱坐標(biāo);把頂點的橫坐標(biāo)增加
1
a
,縱坐標(biāo)增加
1
a
分別作為點B的橫、縱坐標(biāo),則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當(dāng)實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學(xué)語言把你的猜想表達(dá)出來,并給予證明.

查看答案和解析>>

同步練習(xí)冊答案