【題目】如圖,P為平行四邊形ABCD邊AD上一點,E、F分別為PB、PC的中點,PEF、PDC、PAB的面積分別為S、S1、S2,若S=2,則S1+S2=(

A.4 B.6 C.8 D.不能確定

【答案】C

析】

試題分析:過P作PQDC交BC于點Q,由DCAB,得到PQAB,

四邊形PQCD與四邊形APQB都為平行四邊形,

∴△PDC≌△CQP,ABP≌△QPB,

S△PDC=S△CQP,S△ABP=S△QPB

EF為PCB的中位線,

EFBC,EF=BC,

∴△PEF∽△PBC,且相似比為1:2,

S△PEF:S△PBC=1:4,S△PEF=2,

S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=8.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寨卡病毒是一種通過蚊蟲進(jìn)行傳播的蟲媒病毒,其直徑約為0.0000021cm.將數(shù)據(jù)0.0000021用科學(xué)記數(shù)法表示為(
A.2.1×10﹣7
B.2.1×107
C.2.1×10﹣6
D.2.1×106

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點O為坐標(biāo)原點,頂點A、C的坐標(biāo)分別為(0,﹣)、(2,0),將矩形OABC繞點O順時針旋轉(zhuǎn)45°得到矩形OA′B′C′,邊A′B′與y軸交于點D,經(jīng)過坐標(biāo)原點的拋物線y=ax2+bx同時經(jīng)過點A′、C′.

(1)求拋物線所對應(yīng)的函數(shù)表達(dá)式;

(2)寫出點B′的坐標(biāo);

(3)點P是邊OC′上一點,過點P作PQOC′,交拋物線位于y軸右側(cè)部分于點Q,連接OQ、DQ,設(shè)ODQ的面積為S,當(dāng)直線PQ將矩形OA′B′C′的面積分為1:3的兩部分時,求S的值;

(4)保持矩形OA′B′C′不動,將矩形OABC沿射線CO方向以每秒1個單位長度的速度平移,設(shè)平移時間為t秒(t0).當(dāng)矩形OABC與矩形OA′B′C′重疊部分圖形為軸對稱多邊形時,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點,某校學(xué)生會為了調(diào)查學(xué)生對霧霾天氣知識的了解程度,隨機抽取了該校的n名學(xué)生做了一次跟蹤調(diào)查,將調(diào)查結(jié)果分為四個等級:(A)非常了解.(B)比較了解.(C)基本了解.(D)不了解,并將調(diào)查結(jié)果繪制成如下兩幅不完整統(tǒng)計圖.

根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)求n的值;

(2)在調(diào)查的n名學(xué)生中,對霧霾天氣知識不了解的學(xué)生有 人,并將條形統(tǒng)計圖補充完整.

(3)估計該校1500名學(xué)生中,對霧霾天氣知識比較了解的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠甲、乙兩個車間同時開始生產(chǎn)某種產(chǎn)品,產(chǎn)品總?cè)蝿?wù)量為m件,開始甲、乙兩個車間工作效率相同.乙車間在生產(chǎn)一段時間后,停止生產(chǎn),更換新設(shè)備,之后工作效率提高.甲車間始終按原工作效率生產(chǎn).甲、乙兩車間生產(chǎn)的產(chǎn)品總件數(shù)y與甲的生產(chǎn)時間x(時)的函數(shù)圖象如圖所示.

(1)甲車間每小時生產(chǎn)產(chǎn)品 件,a=

(2)求乙車間更換新設(shè)備之后y與x之間的函數(shù)關(guān)系式,并求m的值.

(3)若乙車間在開始更換新設(shè)備時,增加兩名工作人員,這樣可便更換設(shè)備時間減少0.5小時,并且更換后工作效率提高到原來的2倍,那么兩個車間完成原任務(wù)量需幾小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點P是直角三角形ABC斜邊AB上一動點(不與AB重合),分別過A,B向直線CP作垂線,垂足分別為E,F,Q為斜邊AB的中點.

1)如圖1,當(dāng)點P與點Q重合時,AEBF的位置關(guān)系是 ,QEQF的數(shù)量關(guān)系式

2)如圖2,當(dāng)點P在線段AB上不與點Q重合時,試判斷QEQF的數(shù)量關(guān)系,并給予證明;

3)如圖3,當(dāng)點P在線段BA(或AB)的延長線上時,此時(2)中的結(jié)論是否成立?請畫出圖形并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC,則下列結(jié)論:①abc0;②;③ac﹣b+1=0;④OAOB=﹣.其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩組數(shù)據(jù),它們都是由n個數(shù)據(jù)組成,甲組數(shù)據(jù)的方差是0.4,乙組數(shù)據(jù)的方差是0.2,那么下列關(guān)于甲乙兩組數(shù)據(jù)波動說法正確的是(  ).

A. 甲的波動小 B. 乙的波動小 C. 甲、乙的波動相同 D. 甲、乙的波動的大小無法比較

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,點A表示﹣3,從點A出發(fā),沿數(shù)軸移動5個單位長度到達(dá)點B,則點B所表示的數(shù)為( 。

A. 2 B. ﹣8 C. 2或﹣8 D. 以上均不對

查看答案和解析>>

同步練習(xí)冊答案