【題目】【新知理解】

如圖①,點C在線段AB上,圖中共有三條線段AB、ACBC,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點C是線段AB巧點”.

線段的中點__________這條線段的巧點;(填不是.

AB = 12cm,點C是線段AB的巧點,則AC=___________cm;

【解決問題】

3如圖②,已知AB=12cm.動點P從點A出發(fā),以2cm/s的速度沿AB向點B勻速移動:點Q從點B出發(fā),以1cm/s的速度沿BA向點A勻速移動,點P、Q同時出發(fā),當(dāng)其中一點到達終點時,運動停止,設(shè)移動的時間為ts.當(dāng)t為何值時,A、P、Q三點中其中一點恰好是另外兩點為端點的線段的巧點?說明理由

【答案】1)是;(2468;(3)詳見解析.

【解析】試題分析:(1)由巧點定義即可判斷;

2)分BC=2AC、BC=AC、BC=AC三種情況討論即可;

3PA、Q的巧點時和QA、P的巧點時兩種情況討論即可.

試題解析:1

2①如圖:

當(dāng)BC=2AC時,AC=×12=4cm;

②如圖:

當(dāng)BC=AC時,AC=×12=6cm

③如圖:

當(dāng)BC=AC時,AC=×12=8cm

BC長為4cm6cm8cm;

468;

3t秒后,AP=2t,AQ=12-2t

①由題意可知A不可能為P、Q兩點的巧點,此情況排除;

②當(dāng)PA、Q的巧點時

. AP=AQ s

. AP=AQ s

. AP=AQ s

③當(dāng)QA、P的巧點時

. AQ=AP s

. AQ=AP s

. AQ=AP s

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,A,B在數(shù)軸上對應(yīng)的數(shù)分別用a,b表示,且(ab+100)2+|a-20|=0, P是數(shù)軸上的一個動點.

(1)在數(shù)軸上標(biāo)出A、B的位置,并求出A、B之間的距離

(2)已知線段OB上有點C且|BC|=6,當(dāng)數(shù)軸上有點P滿足PB=2PC時,求P點對應(yīng)的數(shù).

(3)動點M從原點開始第一次向左移動1個單位長度,第二次向右移動3個單位長度,第三次向左移動5個單位長度,第四次向右移動7 個單位長度,…,點M能移動到與A或B重合的位置嗎?若都不能,請直接回答,若能,請直接指出,第幾次移動與哪一點重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AE∠BAC的平分線,∠ABC的平分線 BMAE于點M,點OAB上,以點O為圓心,OB的長為半徑的圓經(jīng)過點M,交BC于點G,交 AB于點F

1)求證:AE⊙O的切線.

2)當(dāng)BC=8,AC=12時,求⊙O的半徑.

3)在(2)的條件下,求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2m-43m-1是同一個數(shù)的平方根,則m的值是(

A. -3B. 1C. -31D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年五一期間,某市旅游營收達31.75億元,數(shù)值31.75億用科學(xué)記數(shù)法可表示為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個二次函數(shù)的圖象開口向上,頂點坐標(biāo)為(23),那么這個二次函數(shù)的解析式可以是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:3ab﹣(3a23a2b+3a2a2b2),其中a=﹣1,b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有七名同學(xué)站成一排照畢業(yè)紀(jì)念照,其中甲必須站在正中間,并且乙、丙兩位同學(xué)要站在一起,則不同的站法有(
A.240種
B.192種
C.96種
D.48種

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天,一蔬菜經(jīng)營戶用234元錢從蔬菜批發(fā)市場批了西紅柿和茄子共50公斤到菜市場去賣,西紅柿和茄子這天的批發(fā)價與零售價如下表所示:

問:(1)該經(jīng)營戶當(dāng)天在蔬菜批發(fā)市場批了西紅柿和茄子各多少公斤?

2)他當(dāng)天賣完這些西紅柿和茄子能賺多少錢?

查看答案和解析>>

同步練習(xí)冊答案