如圖,,上三點(diǎn),若,則     度.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、在圖1-5中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例:
當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn):
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實(shí)踐探究:
(1)正方形FGCH的面積是
a2+b2
;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請你就圖2-圖4的三種情形分別畫出剪拼成一個(gè)新正方形的示意圖.

聯(lián)想拓展:
小明通過探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移;當(dāng)b>a時(shí),如圖5的圖形能否剪拼成一個(gè)正方形?若能,請你在圖中畫出剪拼的示意圖;若不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料:
在圖1-圖4中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
小明的做法:當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連接FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.
進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
解決下列問題:
(1)正方形FGCH的面積是
 
;(用含a,b的式子表示)
(2)類比圖1的剪拼方法,請你就圖2-圖4的三種情形分別畫出剪拼成一個(gè)新正方形的示意圖.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在圖1中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例
當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連結(jié)FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連結(jié)CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實(shí)踐探究
【小題1】正方形FGCH的面積是         ;(用含a, b的式子表示)
【小題2】類比圖1的剪拼方法,請你就圖2—圖4的三種情形分別畫出剪拼成一個(gè)新正方形的示意圖.

【小題3】聯(lián)想拓展小明通過探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移.當(dāng)b>a時(shí)(如圖5),能否剪拼成一個(gè)正方形?若能,請你在圖5中畫出剪拼成的正方形的示意圖;若不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年北京通州區(qū)中考模擬數(shù)學(xué)卷 題型:解答題

在圖1中,正方形ABCD的邊長為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.

操作示例

當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連結(jié)FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.

思考發(fā)現(xiàn)

小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連結(jié)CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對于剪拼得到的四邊形FGCH(如圖1),過點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.

實(shí)踐探究

1.正方形FGCH的面積是          ;(用含a, b的式子表示)

2.類比圖1的剪拼方法,請你就圖2—圖4的三種情形分別畫出剪拼成一個(gè)新正方形的示意圖.

 

3.聯(lián)想拓展小明通過探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移.當(dāng)b>a時(shí)(如圖5),能否剪拼成一個(gè)正方形?若能,請你在圖5中畫出剪拼成的正方形的示意圖;若不能,簡要說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案