【題目】如圖,平行四邊形中,連接,點為對稱中心,點在上,若,,,,則______.
【答案】或2
【解析】
首先過點A作AE⊥CD,交CD的延長線于點E,由平行四邊形ABCD中,∠ABC=120°,BC=2,可求得AE的長,又由tan∠DCA=,可求得AC的長,然后分別從點P在OA上與點P在OC上去分析求解即可求得答案.
過點A作AE⊥CD,交CD的延長線于點E,
∵四邊形ABCD是平行四邊形,∠ABC=120°,BC=2,
∴∠ADC=∠ABC=120°,AD=BC=2,
∴∠ADE=60°,
∴∠EAD=30°,
∴ED=AD=,
∴AE==3,
∵tan∠DCA=,
∴EC=2AE=6,
∴AC==3,
∴OA=AC=,
若點P在OA上,則AP=OAOP=-=;
若點P在OC上,AP=OA+OP=+=2.
∴AP=或2.
故答案為:或2.
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD邊長為4,M、N分別是BC、CD上的兩個動點,當M點在BC上運動時,保持AM和MN垂直,
(1)證明:Rt△ABM ∽Rt△MCN;
(2)設BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關系式;當M點運動到什么位置時,四邊形ABCN的面積最大,并求出最大面積;
(3)當M點運動到什么位置時Rt△ABM∽Rt△AMN,求此時x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年學校舉行足球聯(lián)賽,共賽17輪(即每隊均需參賽17場),記分辦法是:勝1場得3分,平1場得1分,負1場得0分.在這次足球比賽中,小虎足球隊得16分,且踢平場數(shù)是所負場數(shù)的整數(shù)倍,則小虎足球隊所負場數(shù)的情況有( )
A.2種B.3種C.4種D.5種
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,AD⊥BC于點D,BE⊥AC于點E,AD與BE交于點F,BH⊥AB于點B,點M是BC的中點,連接FM并延長交BH于點H.
(1)如圖①所示,若∠ABC=30°,求證:DF+BH=BD;
(2)如圖②所示,若∠ABC=45°,如圖③所示,若∠ABC=60°(點M與點D重合),猜想線段DF、BH與BD之間又有怎樣的數(shù)量關系?請直接寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:和都是等邊三角形,點在邊上,連接.
(1)如圖1,求證:;
(2)如圖2,點在上,(),連接并延長交于點,連接、,在不添加任何輔助線的情況下,請直接寫出圖2中所有與線段相等的線段(線段除外).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為直徑,點為半徑上異于點和點的一個點,過點作與直徑垂直的弦,連接,作,交于點,連接、,交于點.
(1)求證:為的切線;
(2)若的半徑為,,求;
(3)請猜想與的數(shù)量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個工程隊計劃修建一條長15千米的鄉(xiāng)村公路,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務所需天數(shù)是甲工程隊單獨完成修路任務所需天數(shù)的1.5倍.
(1)求甲、乙兩個工程隊每天各修路多少千米?
(2)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過5.2萬元,甲工程隊至少修路多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】疫情期間的某一天,“建鄴云課堂”為學生提供了語文、數(shù)學、英語三個學科各一節(jié)微課,甲、乙兩名同學隨機選擇一節(jié)微課自主學習.
(1)甲同學選擇數(shù)學微課的概率是 ;
(2)求甲、乙兩名同學選擇同一學科微課的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com