(2012•內(nèi)江)如圖,正△ABC的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度,沿A→B→C的方向運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為x(秒),y=PC2,則y關(guān)于x的函數(shù)的圖象大致為( 。
分析:需要分類討論:①當(dāng)0≤x≤3,即點(diǎn)P在線段AB上時(shí),根據(jù)余弦定理知cosA=
AP2+AC2-PC2
2PA•AC
,所以將相關(guān)線段的長(zhǎng)度代入該等式,即可求得y與x的函數(shù)關(guān)系式,然后根據(jù)函數(shù)關(guān)系式確定該函數(shù)的圖象.②當(dāng)3<x≤6,即點(diǎn)P在線段BC上時(shí),y與x的函數(shù)關(guān)系式是y=(6-x)2=(x-6)2(3<x≤6),根據(jù)該函數(shù)關(guān)系式可以確定該函數(shù)的圖象.
解答:解:∵正△ABC的邊長(zhǎng)為3cm,
∴∠A=∠B=∠C=60°,AC=3cm.
①當(dāng)0≤x≤3時(shí),即點(diǎn)P在線段AB上時(shí),AP=xcm(0≤x≤3);
根據(jù)余弦定理知cosA=
AP2+AC2-PC2
2PA•AC

1
2
=
x2+9-y
6x
,
解得,y=x2-3x+9(0≤x≤3);
該函數(shù)圖象是開(kāi)口向上的拋物線;
②當(dāng)3<x≤6時(shí),即點(diǎn)P在線段BC上時(shí),PC=(6-x)cm(3<x≤6);
則y=(6-x)2=(x-6)2(3<x≤6),
∴該函數(shù)的圖象是在3<x≤6上的拋物線;
故選C.
點(diǎn)評(píng):本題考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象.解答該題時(shí),需要對(duì)點(diǎn)P的位置進(jìn)行分類討論,以防錯(cuò)選.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•內(nèi)江)如圖所示,△ABC的頂點(diǎn)是正方形網(wǎng)格的格點(diǎn),則sinA的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•內(nèi)江)如圖,a∥b,∠1=65°,∠2=140°,則∠3=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•內(nèi)江)如圖所示,A、B是邊長(zhǎng)為1的小正方形組成的網(wǎng)格的兩個(gè)格點(diǎn),在格點(diǎn)中任意放置點(diǎn)C,恰好能使△ABC的面積為1的概率是
2
9
2
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•內(nèi)江)如圖,四邊形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,則S梯形ABCD=
9
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•內(nèi)江)如圖,四邊形ABCD是矩形,E是BD上的一點(diǎn),∠BAE=∠BCE,∠AED=∠CED,點(diǎn)G是BC、AE延長(zhǎng)線的交點(diǎn),AG與CD相交于點(diǎn)F.
(1)求證:四邊形ABCD是正方形;
(2)當(dāng)AE=2EF時(shí),判斷FG與EF有何數(shù)量關(guān)系?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案