【題目】如圖,四邊形ABCD內接于⊙O.
(1)連接AC、BD,若∠BAC=∠CAD=60°,則△DBC的形狀為 .
(2)在(1)的條件下,試探究線段AD,AB,AC之間的數量關系,并證明你的結論;
(3)若,∠DAB=∠ABC=90°,點P為上的一動點,連接PA,PB,PD,求證:PD=PB+PA.
【答案】(1)等邊三角形;(2)AC=AB+AD,理由見解析;(3)證明見解析.
【解析】
(1)利用等弧對等角,可以判斷出△DBC是等邊三角形;
(2)如圖1,在AC上截取AE=AD,連接DE,利用等邊△DBC以及等邊對等角的關系,可以證得△DAB≌△DEC(SAS),可以證明AC=AB+AD;
(3)如圖2,根據已知條件易證得四邊形ABCD是正方形,在PD上取DE=BP,也同樣可證得△DAE≌△BAP(SAS),可證得PAE為等腰直角三角形,所以PE=PA.
(1)∵∠BAC=∠BDC=60°,∠CAD=∠CBD=60°,
∴∠BDC=∠CBD=∠BCD=60°,
∴△DBC是等邊三角形.
故答案為:等邊三角形.
(2)結論:AC=AB+AD.
理由:如圖1,在AC上截取AE=AD,連接DE.
∵∠DAE=60°,AD=AE,
∴△ADE是等邊三角形,
∴AD=DE,∠ADE=∠BDC=60°,
∴∠ADB=∠EDC,
∵DA=DE,DB=DC,
∴△DAB≌△DEC(SAS),
∴EC=AB,
∴DE=AD
∴AC=AE+EC=AD+AB.
(3)如圖2中,在PD上取DE=BP,
∵∠DAB=∠ABC=90°,
∴∠BCD=∠ADC=90°,
∴四邊形ABCD是矩形,
∵,
∴AB=BC,
∴四邊形ABCD是正方形,
∴DA=BD,∠ADE=∠ABF,DE=BP,
∴△DAE≌△BAP(SAS),
∴AE=AP,∠DAE=∠BAP,
∴∠PAE=∠BAD=90°,
∴PE=PA,
∴PD﹣PB=PD=DE=PE=PA.
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2﹣x+c經過A(﹣2,0),B(0,2)兩點,動點P,Q同時從原點出發(fā)均以1個單位/秒的速度運動,動點P沿x軸正方向運動,動點Q沿y軸正方向運動,連接PQ,設運動時間為t秒
(1)求拋物線的解析式;
(2)當BQ=AP時,求t的值;
(3)隨著點P,Q的運動,拋物線上是否存在點M,使△MPQ為等邊三角形?若存在,請求出t的值及相應點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P(a,b),若點P′的坐標為(a+kb,ka+b)(其中k為常數,且k≠0),則稱點P′為點P的“k屬派生點”.
如:P(1,4)的“2屬派生點為P′(1+2×4,2×1+4),即P′(9,6);
(1)點P(-1,3)的“2屬派生點”P′的坐標為______;
(2)若點P的“3屬派生點”P′的坐標為(-1,3),則點P的坐標為______.
(3)若點P在x軸的正半軸上,點P的“k屬派生點”為點P′,線段PP′的長度等于線段OP的長度,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面內的兩條直線l1、l2,點A、B在直線l2上,過點A、B兩點分別作直線l1的垂線,垂足分別為A1、B1,我們把線段A1B1叫做線段AB在直線l2上的正投影,其長度可記作T(AB,CD)或T(AB,l2),特別地,線段AC在直線l2上的正投影就是線段A1C,請依據上述定義解決如下問題.
(1)如圖1,在銳角△ABC中,AB=5,T(AC,AB)=3,則T(BC,AB)= ;
(2)如圖2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面積;
(3)如圖3,在鈍角△ABC中,∠A=60°,點D在AB邊上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知拋物線(0≤x≤3)在x軸上方的部分,記作C1,它與x軸交于點O,A1,將C1繞點A1旋轉180°得C2,C2與x 軸交于另一點A2.請繼續(xù)操作并探究:將C2繞點A2旋轉180°得C3,與x 軸交于另一點A3;將C3繞點A2旋轉180°得C4,與x 軸交于另一點A4,這樣依次得到x軸上的點A1,A2,A3,…,An,…,及拋物線C1,C2,…,Cn,….則點A4的坐標為 ;Cn的頂點坐標為 (n為正整數,用含n的代數式表示) .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖①,BE,DF,MN是三根直立于地面的木桿在同一燈光下的影子,請畫出第三根木桿,(畫出示意圖,不用寫畫法)
(2)如圖②,小明在陽光下利用標桿AB測量校園內一棵小樹CD的高度,在同一時刻測得標桿的影長BE為2 m,小樹的影長落在地面上的部分DM為3 m,落在墻上的部分MN為1 m,若標桿AB的長為1.5 m,求小樹的高度CD.
圖① 圖②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若點P從點A沿AB邊向B點以1 cm/s的速度移動,點Q從B點沿BC邊向點C以2 cm/s的速度移動,兩點同時出發(fā).
(1)問幾秒后,△PBQ的面積為8cm?
(2)出發(fā)幾秒后,線段PQ的長為4cm ?
(3)△PBQ的面積能否為10 cm2?若能,求出時間;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進價格為3元/個的某品牌粽子,根據市場預測,該品牌粽子每個售價4元時,每天能出售500個,并且售價每上漲0.1元,其銷售量將減少10個,為了維護消費者利益,物價部門規(guī)定,該品牌粽子售價不能超過進價的200%,請你利用所學知識幫助超市給該品牌粽子定價,使超市每天的銷售利潤為800元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com