【題目】(列方程(組)及不等式解應用題)
春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.
【答案】
(1)
解:設甲種商品每件的進價為x元,乙種商品每件的進價為y元,
依題意得: ,解得: ,
答:甲種商品每件的進價為30元,乙種商品每件的進價為70元.
(2)
解:設該商場購進甲種商品m件,則購進乙種商品(100﹣m)件,
由已知得:m≥4(100﹣m),
解得:m≥80.
設賣完A、B兩種商品商場的利潤為w,
則w=(40﹣30)m+(90﹣70)(100﹣m)=﹣10m+2000,
∴當m=80時,w取最大值,最大利潤為1200元.
故該商場獲利最大的進貨方案為甲商品購進80件、乙商品購進20件,最大利潤為1200元.
【解析】(1)設甲種商品每件的進價為x元,乙種商品每件的進價為y元,根據(jù)“購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元”可列出關于x、y的二元一次方程組,解方程組即可得出兩種商品的單價;(2)設該商場購進甲種商品m件,則購進乙種商品(100﹣m)件,根據(jù)“甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍”可列出關于m的一元一次不等式,解不等式可得出m的取值范圍,再設賣完A、B兩種商品商場的利潤為w,根據(jù)“總利潤=甲商品單個利潤×數(shù)量+乙商品單個利潤×數(shù)量”即可得出w關于m的一次函數(shù)關系上,根據(jù)一次函數(shù)的性質(zhì)結合m的取值范圍即可解決最值問題.
本題考查了二元一次方程組的應用、一次函數(shù)的應用以及解一元一次不等式,解題的關鍵是:(1)根據(jù)數(shù)量關系列出關于x、y的二元一次方程組;(2)根據(jù)數(shù)量關系找出w關于m的函數(shù)關系式.本題屬于中檔題,難度不大,解決該題型題目時,根據(jù)數(shù)量關系列出方程(方程組、不等式或函數(shù)關系式)是關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC,BD相交于點O,AC=12cm,BD=16cm,動點N從點D出發(fā),沿線段DB以2cm/s的速度向點B運動,同時動點M從點B出發(fā),沿線段BA以1cm/s的速度向點A運動,當其中一個動點停止運動時另一個動點也隨之停止,設運動時間為t(s)(t>0),以點M為圓心,MB長為半徑的⊙M與射線BA,線段BD分別交于點E,F(xiàn),連接EN.
(1)求BF的長(用含有t的代數(shù)式表示),并求出t的取值范圍;
(2)當t為何值時,線段EN與⊙M相切?
(3)若⊙M與線段EN只有一個公共點,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,BC=12,動點P從A點出發(fā),按A→B的方向在AB上移動,動點Q從B點出發(fā),按B→C的方向在BC上移動(當P點到達點B時,P點和Q點停止移動,且兩點的移動速度相等),記PA=x,△BPQ的面積為y,則y關于x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC內(nèi)接于⊙O,D是 上一點,OD⊥BC,垂足為H.
(1)如圖1,當圓心O在AB邊上時,求證:AC=2OH;
(2)如圖2,當圓心O在△ABC外部時,連接AD、CD,AD與BC交于點P,求證:∠ACD=∠APB;
(3)在(2)的條件下,如圖3,連接BD,E為⊙O上一點,連接DE交BC于點Q、交AB于點N,連接OE,BF為⊙O的弦,BF⊥OE于點R交DE于點G,若∠ACD﹣∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC= ,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進甲乙兩種商品,甲的進貨單價比乙的進貨單價高20元,已知20個甲商品的進貨總價與25個乙商品的進貨總價相同.
(1)求甲、乙每個商品的進貨單價;
(2)若甲、乙兩種商品共進貨100件,要求兩種商品的進貨總價不高于9000元,同時甲商品按進價提高10%后的價格銷售,乙商品按進價提高25%后的價格銷售,兩種商品全部售完后的銷售總額不低于10480元,問有哪幾種進貨方案?
(3)在條件(2)下,并且不再考慮其他因素,若甲乙兩種商品全部售完,哪種方案利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習概率的課堂上,老師提出問題:只有一張電影票,小明和小剛想通過抽取撲克牌的游戲來決定誰去看電影,請你設計一個對小明和小剛都公平的方案.
甲同學的方案:將紅桃2、3、4、5四張牌背面向上,小明先抽一張,小剛從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小明看電影,否則小剛看電影.
(1)甲同學的方案公平嗎?請用列表或畫樹狀圖的方法說明;
(2)乙同學將甲的方案修改為只用紅桃2、3、4三張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?(只回答,不說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC水平向右平移4個單位,再向下后平移1得到△A′B′C′.
(1)畫出平移后的△A′B′C′;
(2)畫出AB邊上的高線CD(利用三角板畫圖);
(3)畫出△ABC中AB邊上的中線CE;
(4)圖中AC與A′C′的關系是: ;
(5)△BCE的面積為 .
(6)若△A″BC的面積與△ABC面積相同,則A″(A″在格點上)的位置(除A點外)共有_________個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于 BF長為半徑畫弧,兩弧交于一點P,連
接AP并延長交BC于點E,連接EF.
(1)四邊形ABEF是;(選填矩形、菱形、正方形、無法確定)(直接填寫結果)
(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為 , ∠ABC=°.(直接填寫結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明從家騎自行車出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時,他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設他們出發(fā)后經(jīng)過t min時,小明與家之間的距離為s1m,小明爸爸與家之間的距離為s2m,圖中折線OABD、線段EF分別表示s1、s2與t之間的函數(shù)關系的圖象.
(1)求s2與t之間的函數(shù)關系式;
(2)小明從家出發(fā),經(jīng)過多長時間在返回途中追上爸爸?這時他們距離家還有多遠?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com