【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).
(1)畫出與△ABC 關(guān)于 y 軸對稱的圖形△A1B1C1;
(2)寫出△A1B1C1 各頂點(diǎn)坐標(biāo);
(3)求△ABC 的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在AB直線一側(cè)C、D兩點(diǎn),在AB上找一點(diǎn)P,使C、D、P三點(diǎn)組成的三角形的周長最短,找出此點(diǎn)并說明理由.
(2)如圖2,在∠AOB內(nèi)部有一點(diǎn)P,是否在OA、OB上分別存在點(diǎn)E、F,使得E、F、P三點(diǎn)組成的三角形的周長最短,找出E、F兩點(diǎn),并說明理由.
(3)如圖3,在∠AOB內(nèi)部有兩點(diǎn)M、N,是否在OA、OB上分別存在點(diǎn)E、F,使得E、F、M、N,四點(diǎn)組成的四邊形的周長最短,找出E、F兩點(diǎn),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)15﹣(﹣8)+(﹣20)﹣12
(2)2×(﹣3)2﹣4×(﹣3)+15
(3)(﹣)2+|﹣2|3﹣
(4)﹣20+(﹣2)2﹣32+|﹣10|
(5)﹣22×2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小凡把果樹林分為兩部分,左地塊用新技術(shù)管理,右地塊用老方法管理,管理成本相同,她在左、右兩地塊上各隨機(jī)選取20棵果樹,按產(chǎn)品分成甲、乙、丙、丁四個等級(數(shù)據(jù)分組包括左端點(diǎn)不包括右端點(diǎn)),并制作如下兩幅不完整的統(tǒng)計(jì)圖:
(1)補(bǔ)齊左地塊統(tǒng)計(jì)圖,求右地塊乙級所對應(yīng)的圓心角的度數(shù);
(2)比較兩地塊的產(chǎn)量水平,并說明試驗(yàn)結(jié)果;
(3)在左地塊隨機(jī)抽查一棵果樹,求該果樹產(chǎn)量為乙級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分為三個三角形,則S△ABO︰S△BCO︰S△CAO等于( )
A. 1︰1︰1
B. 1︰2︰3
C. 2︰3︰4
D. 3︰4︰5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:求代數(shù)式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代數(shù)式m2+m+4的最小值;
(2)求代數(shù)式4﹣x2+2x的最大值;
(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設(shè)AB=x(m),請問:當(dāng)x取何值時,花園的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)5m-7n-8p+5n-9m-p;
(2)x4x5(-x)7+5(x4)4-(x7)3÷x5.
【答案】(1)-4m-2n-9p;(2)3x16
【解析】
(1)先移項(xiàng),再合并同類項(xiàng);
(2)原式利用冪的乘方、同底數(shù)冪的乘法和除法法則計(jì)算,再合并即可得到結(jié)果.
(1)5m-7n-8p+5n-9m-p=5m-9m-7n+5n-8p-p=-4m-2n-9p;
(2)x4x5(-x)7+5(x4)4-(x7)3÷x5=- x4x5x7+5x16-x21÷x5=- x16 +5x16-x16=3x16
【點(diǎn)睛】
此題考查了冪的乘方、同底數(shù)冪的乘法、除法法則計(jì)算以及合并同類項(xiàng),熟練掌握整式運(yùn)算的有關(guān)法則是解答此題的關(guān)鍵.
【題型】解答題
【結(jié)束】
21
【題目】解方程:(x-2)-(4x-1)=4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知a+b=5,ab=-2,求代數(shù)式(6a-3b-2ab)-(a-8b-ab)的值;
(2)已知2x-y-4=0,求9x27y÷81y的值.
【答案】(1)27;(2)81.
【解析】
(1)運(yùn)用整式的加減運(yùn)算順序先去括號,再合并同類項(xiàng),根據(jù)乘法的分配律將5a+5b變形為5(a+b),最后代入求值即可;
(2)根據(jù)冪的乘方,可得同底數(shù)冪的乘法,根據(jù)同底數(shù)冪的乘法,可得答案.
(1)原式=6a-3b-2ab-a+8b+ab=5a+5b-ab=5(a+b)-ab,
當(dāng)a+b=5,ab=-2時,
原式=5×5-(-2)=27;
(2)9x27y÷81y=32x33y÷34y=32x-y,
由2x-y-4=0,得2x-y=4,
故原式=34=81.
【點(diǎn)睛】
本題考查了冪的乘方,同底數(shù)冪的乘法,整式的混合運(yùn)算和求值的應(yīng)用,用了整體代入思想.
【題型】解答題
【結(jié)束】
23
【題目】根據(jù)要求完成下列題目:
(1)圖中有_____塊小正方體;
(2)請?jiān)谙旅娣礁窦堉蟹謩e畫出它的主視圖、左視圖和俯視圖;
(3)用小正方體搭一幾何體,使得它的俯視圖和左視圖與你在圖方格中所畫的圖一致,若這樣的幾何體最少要m個小正方體,最多要n個小正方體,則m+n的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABGD中,AB=AD=6,梯形ABCD中,DE⊥DC交AB于E,DF平分∠EDC交BC于F,連結(jié)EF.
(1)證明:EF=CF;
(2)當(dāng) 時,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com