【題目】如圖,正方形ABGD中,AB=AD=6,梯形ABCD中,DE⊥DC交AB于E,DF平分∠EDC交BC于F,連結(jié)EF.
(1)證明:EF=CF;
(2)當(dāng) 時(shí),求EF的長.

【答案】
(1)證明:∵正方形ABGD,

又∵DE⊥DC,

∴∠ADE+∠EDG=90°=∠GDC+∠EDG,

∴∠ADE=∠GDC.

又∵∠A=∠DGC,

且AD=GD,

在△ADE與△GDC中,

,

∴△ADE≌△GDC(ASA).

∴DE=DC,且AE=GC.

在△EDF和△CDF中,

,

∴△EDF≌△CDF(SAS).

∴EF=CF


(2)解:∵ ,

∴AE=GC=2.

設(shè)EF=x,則BF=8﹣CF=8﹣x,BE=6﹣2=4.

由勾股定理,得x2=(8﹣x)2+42

解之,得x=5,

即EF=5


【解析】(1)根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)證明即可;(2)設(shè)EF=x,根據(jù)勾股定理解答即可.
【考點(diǎn)精析】關(guān)于本題考查的正方形的性質(zhì),需要了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).

(1)畫出與△ABC 關(guān)于 y 軸對稱的圖形△A1B1C1;

(2)寫出△A1B1C1 各頂點(diǎn)坐標(biāo);

(3)求△ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是∠AOB外的一點(diǎn),點(diǎn)Q是點(diǎn)P關(guān)于OA的對稱點(diǎn),點(diǎn)R是點(diǎn)P關(guān)于OB的對稱點(diǎn),直線QR分別交∠AOB兩邊OA,OB于點(diǎn)M,N,連結(jié)PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級(1)班的宣傳委員在辦黑板報(bào)時(shí),采用了下面的圖案作為邊框,其中每個(gè)黑色六邊形與6個(gè)白色六邊形相鄰.若一段邊框上有45個(gè)黑色六邊形,則這段邊框共有白色六邊形( 。

A. 182個(gè) B. 180個(gè) C. 272個(gè) D. 270個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.
(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?
(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?
(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費(fèi)用不會改變,每套甲種套房提升費(fèi)用將會提高a萬元(a>0),市政府如何確定方案才能使費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形OABC是菱形,CD⊥x軸,垂足為D,函數(shù) 的圖象經(jīng)過點(diǎn)C,且與AB交于點(diǎn)E.若OD=2,則△OAE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點(diǎn),連接BD,使∠A=2∠1,E是BC上的一點(diǎn),以BE為直徑的⊙O經(jīng)過點(diǎn)D.
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結(jié)果保留根號和π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù) 的圖象上.若點(diǎn)A的坐標(biāo)為(﹣2,﹣2),則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中AB=3,BC=4,∠B=90°,點(diǎn)B、C在兩坐標(biāo)軸上滑動.當(dāng)邊AC⊥x軸時(shí),點(diǎn)A剛好在雙曲線 上,此時(shí)下列結(jié)論不正確的是( )

A.點(diǎn)B為(0,
B.AC邊的高為
C.雙曲線為
D.此時(shí)點(diǎn)A與點(diǎn)O距離最大

查看答案和解析>>

同步練習(xí)冊答案