【題目】如圖所示,四邊形ABCD的對角線AC、BD交于點O,若OE=OF,DF∥BE.
(1)求證:△BOE≌△DOF;
(2)求證:四邊形DEBF是平行四邊形;
(3)若OD=OE=OF,則四邊形DEBF是什么特殊的四邊形,請證明.
【答案】見解析
【解析】整體分析:
(1)用ASA證明△BOE≌△DOF;(2)連接DE、BF,用對角線互相平分的四邊形是平行四邊形證明;(3)四邊形DEBF是平行四邊形,且對角線相等.
(1)證明:∵DF∥BE,
∴∠DFE=∠BEO,
在△BOE和△DOF中,
∠DFE=∠BEO,OF=OE,∠DOF=∠EOB,
∴△BOE≌△DOF.
(2)證明:連接DE、BF.
∵△BOE≌△DOF,
∴OD=OB,∵OE=OF,
∴四邊形DEBF是平行四邊形.
(3)若OD=OE=OF,則四邊形DEBF是矩形.
理由:∵OD=OE=OF=OB,
∴BD=EF,
∵四邊形DEBF是平行四邊形,
∴四邊形DEBF是矩形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD的周長為20 cm,兩條對角線AC,BD相交于點O,過點O作AC的垂線EF,分別交兩邊AD,BC于點E,F(xiàn)(不與頂點重合),則以下關于△CDE與△ABF判斷完全正確的一項為( )
A. △CDE與△ABF的周長都等于10 cm,但面積不一定相等
B. △CDE與△ABF全等,且周長都為10 cm
C. △CDE與△ABF全等,且周長都為5 cm
D. △CDE與△ABF全等,但它們的周長和面積都不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,D是邊AC上一點,連接BD.將△BCD繞點B逆時針旋轉60°得到△BAE,連接ED.若BC=10,BD=9,求△AED的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個完全相同的大長方形,長為a,各放入四個完全一樣的小長方形后,得到圖(1)、圖(2),那么圖(1)陰影部分的周長與圖(2)陰影部分的周長的差是( )(用含a的代數(shù)式表示)
A. a B. a C. a D. a
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,EA是⊙O的切線.若∠EAC=120°,則∠ABC的度數(shù)是( )
A.80°
B.70°
C.60°
D.50°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y= x2﹣ x﹣3的圖象與x軸交于A,B兩點(點A在點B的左側),與y軸的負半軸交于點C,頂點為D,作直線CD,點P是拋物線對稱軸上的一點,若以P為圓心的圓經過A,B兩點,并且和直線CD相切,則點P的坐標為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店需要購進A.B兩種商品共160件,其進價和售價如表:
A | B | |
進價(元/件) | 15 | 35 |
售價(元/件) | 20 | 45 |
(1)當A.B兩種商品分別購進多少件時,商店計劃售完這批商品后能獲利1100元;
(2)若商店計劃購進A種商品不少于66件,且銷售完這批商品后獲利多于1260元,請你幫該商店老板預算有幾種購貨方案?獲利最大是多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com