【題目】D,E分別是不等邊三角形ABC(即AB≠BC≠AC)的邊AB,AC的中點(diǎn).O是△ABC所在平面上的動(dòng)點(diǎn),連接OB,OC,點(diǎn)G,F(xiàn)分別是OB,OC的中點(diǎn),順次連接點(diǎn)D,G,F(xiàn),E.

(1)如圖,當(dāng)點(diǎn)O在△ABC的內(nèi)部時(shí),求證:四邊形DGFE是平行四邊形;
(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?(直接寫(xiě)出答案,不需要說(shuō)明理由.)

【答案】
(1)證明:∵D、E分別是AB、AC邊的中點(diǎn),

∴DE∥BC,且DE= BC,

同理,GF∥BC,且GF= BC,

∴DE∥GF且DE=GF,

∴四邊形DEFG是平行四邊形


(2)解:當(dāng)OA=BC時(shí),平行四邊形DEFG是菱形
【解析】(1)根據(jù)三角形中位線定理,由D、E分別是AB、AC邊的中點(diǎn),得到DE∥BC,且DE= BC,同理,GF∥BC,且GF= BC,得到DE∥GF且DE=GF,根據(jù)平行四邊形的判定方法得到四邊形DEFG是平行四邊形;(2)根據(jù)一組鄰邊相等的平行四邊形是菱形,當(dāng)OA=BC時(shí),平行四邊形DEFG是菱形.
【考點(diǎn)精析】利用三角形中位線定理和平行四邊形的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;兩組對(duì)邊分別平行的四邊形是平行四邊形:兩組對(duì)邊分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC90°,點(diǎn)DBC上一點(diǎn),將△ABD沿AD翻折后得到△AED,邊AEBC于點(diǎn)F

(1)如圖①,當(dāng)AEBC時(shí),寫(xiě)出圖中所有與∠B相等的角:  ;所有與∠C相等的角:   

(2)若∠C-∠B50°,∠BADx°(0x45)

求∠B的度數(shù);

②是否存在這樣的x的值,使得△DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某手機(jī)經(jīng)銷商計(jì)劃同時(shí)購(gòu)進(jìn)一批甲、乙兩種型號(hào)的手機(jī),若購(gòu)進(jìn)2臺(tái)甲型號(hào)手機(jī)和1臺(tái)乙型號(hào)手機(jī),共需要資金2800元;若購(gòu)進(jìn)3臺(tái)甲型號(hào)手機(jī)和2臺(tái)乙型號(hào)手機(jī),共需要資金4600元.

1)求甲、乙型號(hào)手機(jī)每臺(tái)進(jìn)價(jià)為多少元?

2)該店計(jì)劃購(gòu)進(jìn)甲、乙兩種型號(hào)的手機(jī)銷售,預(yù)計(jì)用不多于18萬(wàn)元且不少于174萬(wàn)元的資金購(gòu)進(jìn)這兩種手機(jī)共20臺(tái),請(qǐng)問(wèn)有幾種進(jìn)貨方案?請(qǐng)寫(xiě)出進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校體育社團(tuán)在校內(nèi)開(kāi)展你最喜歡的體育項(xiàng)目是什么?四項(xiàng)選一項(xiàng)調(diào)查,對(duì)九年級(jí)學(xué)生隨機(jī)抽樣,并將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖,解答下列問(wèn)題:

(1)本次抽樣人數(shù)有________人;

(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(3)該校九年級(jí)共有600名學(xué)生,估計(jì)九年級(jí)最喜歡跳繩項(xiàng)目的學(xué)生有________人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校對(duì)“學(xué)生在學(xué)校拿手機(jī)影響學(xué)習(xí)的情況”進(jìn)行了調(diào)查,隨機(jī)調(diào)查了部分學(xué)生,對(duì)此問(wèn)題的看法分為三種情況:沒(méi)有影響、影響不大、影響很大,并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問(wèn)題:

人數(shù)統(tǒng)計(jì)表如下:

看法

沒(méi)有影響

影響不大

影響很大

學(xué)生人數(shù)()

20

30

a

1)統(tǒng)計(jì)表中的a    

2)請(qǐng)根據(jù)表中的數(shù)據(jù),談?wù)勀愕目捶ǎú簧儆?/span>2條)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(1,0),C(3,0),D(3,4).以A為頂點(diǎn)的拋物線y=ax2+bx+c過(guò)點(diǎn)C.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動(dòng).點(diǎn)P,Q的運(yùn)動(dòng)速度均為每秒1個(gè)單位.運(yùn)動(dòng)時(shí)間為t秒.過(guò)點(diǎn)P作PE⊥AB交AC于點(diǎn)E.

(1)直接寫(xiě)出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)過(guò)點(diǎn)E作EF⊥AD于F,交拋物線于點(diǎn)G,當(dāng)t為何值時(shí),△ACG的面積最大?最大值為多少?
(3)在動(dòng)點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,當(dāng)t為何值時(shí),在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使以C,Q,E,H為頂點(diǎn)的四邊形為菱形?請(qǐng)直接寫(xiě)出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2;請(qǐng)?jiān)趫D中標(biāo)明旋轉(zhuǎn)中心P的位置并寫(xiě)出其坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,∠C=90°,BC=3,D,E分別在AB、AC上,將△ADE沿DE翻折后,點(diǎn)A落在點(diǎn)A′處,若A′為CE的中點(diǎn),則折痕DE的長(zhǎng)為( )

A.
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖左右兩幅圖案關(guān)于y軸對(duì)稱,右圖案中的左右眼睛的坐標(biāo)分別是(23),(43),嘴角左右端點(diǎn)的坐標(biāo)分別是(2,1),(4,1)

(1)試確定左圖案中的左右眼睛和嘴角左右端點(diǎn)的坐標(biāo);

(2)從對(duì)稱的角度來(lái)考慮,說(shuō)一說(shuō)你是怎樣得到的

查看答案和解析>>

同步練習(xí)冊(cè)答案