如圖,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°且DC=2AB,分別以DA、AB、BC為邊向梯形外作正方形,其面積分別為S1、S2、S3,則S1、S2、S3之間的關系是(      )

A、S1+S3=S2      B、2S1+S3=S2        C、2S3-S2=S1         D、4S1-S3=S2

 

【答案】

A

【解析】

試題分析:過點A作AE∥BC交CD于點E,得到平行四邊形ABCE和Rt△ADE,根據(jù)平行四邊形的性質和勾股定理,不難證明三個正方形的邊長對應等于所得直角三角形的邊.

如圖,過點A作AE∥BC交CD于點E,

∵AB∥DC,

∴四邊形AECB是平行四邊形,

∴AB=CE,BC=AE,∠BCD=∠AED,

∵∠ADC+∠BCD=90°,DC=2AB,

∴AB=DE,∠ADC+∠AED=90°,

∴∠DAE=90°,

,

,,,

,

故選A.

考點:本題考查了勾股定理

點評:解題的關鍵在于通過作輔助線把梯形的問題轉換為平行四邊形和直角三角形的問題,然后把三個正方形的邊長整理到一個三角形中進行解題

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長為( 。
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點O,那么,圖中全等三角形共有
3
對.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對角線,中位線EF交BD于O點,若FO-EO=3,則BC-AD等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長;
(2)試在邊AB上確定點P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習冊答案