【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,3).
(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1 , 并寫(xiě)出A1點(diǎn)的坐標(biāo)及sin∠B1A1C1的值;
以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫(huà)出 將△ABC放大后的△A2B2C2 , 并寫(xiě)出A2點(diǎn)的坐標(biāo);
(2)若點(diǎn)D(a,b)在線(xiàn)段AB上,直接寫(xiě)出經(jīng)過(guò)(2)的變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D2的坐標(biāo).
【答案】
(1)解:如圖,△A1B1C1,△A2B2C2,即為所求,
①A1(2,1),
∵ =B1C +A1C ,A1C1=B1C1,
∴△A1B1C1是等腰直角三角形,
∴sin∠B1A1C1=sin45°= ;
②A2(﹣4,2)
(2)解:∵點(diǎn)D(a,b)在線(xiàn)段AB上,位似比為1:2,
∴D2(2a,2b)
【解析】(1)利用關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特點(diǎn)得出A,B,C對(duì)應(yīng)點(diǎn)的坐標(biāo),在坐標(biāo)平面內(nèi)描出這些點(diǎn),再順次連接即可;根據(jù)方格紙的特點(diǎn)利用勾股定理計(jì)算出△A1B1C1三邊的長(zhǎng),根據(jù)勾股定理得逆定理得出△A1B1C1是等腰直角三角形,,然后利用sin∠B1A1C1=sin45°得出答案;根據(jù)位似圖形的性質(zhì),連接OA并延長(zhǎng)至點(diǎn)A2,使OA=OA2,同理作出B2,C2,再順次連接即可;根據(jù)圖形寫(xiě)出A1,A2
(2)利用位似比得出對(duì)應(yīng)點(diǎn)的坐標(biāo)變化規(guī)律進(jìn)而得出答案。
【考點(diǎn)精析】本題主要考查了作軸對(duì)稱(chēng)圖形和位似變換的相關(guān)知識(shí)點(diǎn),需要掌握畫(huà)對(duì)稱(chēng)軸圖形的方法:①標(biāo)出關(guān)鍵點(diǎn)②數(shù)方格,標(biāo)出對(duì)稱(chēng)點(diǎn)③依次連線(xiàn);它們具有相似圖形的性質(zhì)外還有圖形的位置關(guān)系(每組對(duì)應(yīng)點(diǎn)所在的直線(xiàn)都經(jīng)過(guò)同一個(gè)點(diǎn)—位似中心)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,扇形DOE的半徑為3,邊長(zhǎng)為 的菱形OABC的頂點(diǎn)A,C,B分別在OD,OE, 上,若把扇形DOE圍成一個(gè)圓錐,則此圓錐的高為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,O,B在同一直線(xiàn)上,射線(xiàn)OD和射線(xiàn)OE分別平分∠AOC和∠BOC.
(1)當(dāng)∠BOE=25°時(shí),求∠AOD的度數(shù)
(2)在圖中找出∠COD的補(bǔ)角,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,AB=6,BC=8,E,F(xiàn)分別是AB,BC的中點(diǎn),AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠BOP與OP上點(diǎn)C,點(diǎn)A(在A的左側(cè)),嘉嘉進(jìn)行如下作圖:
①以點(diǎn)O為圓心,OC為半徑畫(huà)弧,交OB于點(diǎn)D,連接CD
②以點(diǎn)A為圓心,OC為半徑畫(huà)弧MN,交AP于點(diǎn)M
③以點(diǎn)M為圓心,CD為半徑畫(huà)弧,交MN于點(diǎn)E,連接ME,作射線(xiàn)AE
如圖所示,則下列結(jié)論不成立的是( )
A. CD∥EM B. AE∥OB C. ∠ODC=∠AEM D. ∠OAE=∠BDC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字﹣2,﹣1,1,4的小球,它們的形狀、大小、質(zhì)地等完全相同,小強(qiáng)先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為a;放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為b.
(1)用列表法或畫(huà)樹(shù)狀圖表示出(a,b)的所有可能出現(xiàn)的結(jié)果;
(2)求小強(qiáng)、小華各取一次小球所確定的點(diǎn)(a,b)落在二次函數(shù)y=x2的圖象上的概率;
(3)求小強(qiáng)、小華各取一次小球所確定的數(shù)a,b滿(mǎn)足直線(xiàn)y=ax+b經(jīng)過(guò)一、二、三象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角” (如圖)就是一例.這個(gè)三角形給出了(n=1,2,3,4,5,6)的展開(kāi)式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)展開(kāi)式中各項(xiàng)的系數(shù);第五行的五個(gè)數(shù)1,4,6,4,1,恰好對(duì)應(yīng)著展開(kāi)式中各項(xiàng)的系數(shù),等等.
有如下三個(gè)結(jié)論:
①當(dāng)a=1,b=1時(shí),代數(shù)式的值是1;
②當(dāng)a=-1,b=2時(shí),代數(shù)式的值是1;
③當(dāng)代數(shù)式的值是1時(shí),a的值是-2或-4.
上述結(jié)論中,所有正確結(jié)論的序號(hào)為( )
A. ①② B. ② C. ③ D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售同一品牌羽絨服和防寒服,已知去年12月份,銷(xiāo)售羽絨服a件,防寒服銷(xiāo)量是羽絨服的4倍,其中防寒服售價(jià)為b元/件,羽絨服的售價(jià)是防寒服的4倍,受市場(chǎng)影響,今年1月份,羽絨服銷(xiāo)量和售價(jià)均下降m%,但防寒服銷(xiāo)量和售價(jià)均增加m%.
(1)求該商場(chǎng)今年1月份銷(xiāo)售羽絨服和防寒服的銷(xiāo)售額;
(2)若a=100,b=300,m=5,則該商場(chǎng)今年1月份銷(xiāo)售羽絨服和防寒服的銷(xiāo)售額是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點(diǎn)E、F分別在菱形的邊BC、CD上滑動(dòng),且E、F不與B、C、D重合.
(1)證明不論E、F在BC.CD上如何滑動(dòng),總有BE=CF;
(2)當(dāng)點(diǎn)E、F在BC.CD上滑動(dòng)時(shí),分別探討四邊形AECF的面積和△CEF的周長(zhǎng)是否發(fā)生變化?如果不變,求出這個(gè)定值;如果變化,求出最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com