【題目】如圖,矩形ABCD中,點E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,點P在矩形ABCD內(nèi).若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四邊形AEPH的面積為5cm2 , 則四邊形PFCG的面積為cm2

【答案】8
【解析】解:連接AP,CP,設(shè)△AHP在AH邊上的高為x,△AEP在AE邊上的高為y. 則△CFP在CF邊上的高為4﹣x,△CGP在CG邊上的高為6﹣y.
∵AH=CF=2cm,AE=CG=3cm,
∴S四邊形AEPH=SAHP+SAEP
=AH×x× +AE×y×
=2x× +3y× =5cm2
2x+3y=10
S四邊形PFCG=SCGP+SCFP=CF×(4﹣x)× +CG×(6﹣y)×
=2(4﹣x)× +3(6﹣y)×
=(26﹣2x﹣3y)×
=(26﹣10)×
=8cm2
所以答案是8.
【考點精析】利用矩形的性質(zhì)對題目進行判斷即可得到答案,需要熟知矩形的四個角都是直角,矩形的對角線相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:拋物線y=ax2+bx+c交y軸于點C(0,4),對稱軸x=2與x軸交于點D,頂點為M,且DM=OC+OD,
(1)求拋物線的解析式;
(2)設(shè)點P(x,y)是第一象限內(nèi)該拋物線上的一個動點,△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求當(dāng)x取多少時,S的值最大,最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,以△ABC的邊AB、AC為邊分別向外作等腰直角△ABD和等腰直角△ACE,連接CD、BE、DE
(1)證明:△ADC≌△ABE;
(2)試判斷△ABC與△ADE面積之間的關(guān)系,并說明理由;
(3)園林小路,曲徑通幽,如圖2所示,小路由白色的正方形大理石和黑色的三角形大理石鋪成,已知中間的所有正方形的面積之和是a平方米,內(nèi)圈的所有三角形的面積之和是b平方米,這條小路一共占地平方米.(不用寫過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,點F在邊AC上,并且CF=1,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】愛好思考的小茜在探究兩條直線的位置關(guān)系查閱資料時,發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AM⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
(1)【特例探究】
如圖1,當(dāng)tan∠PAB=1,c=4 時,a= , b=;
如圖2,當(dāng)∠PAB=30°,c=2時,a= , b=;

(2)【歸納證明】
請你觀察(1)中的計算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來,并利用圖3證明你的結(jié)論.

(3)【拓展證明】
如圖4,ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點G,AD=3 ,AB=3,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條直線上依次有A、B、C三個海島,某海巡船從A島出發(fā)沿直線勻速經(jīng)B 島駛向C島,執(zhí)行海巡任務(wù),最終達到C島.設(shè)該海巡船行駛x(h)后,與B港的距離為y(km),y與x的函數(shù)關(guān)系如圖所示.
(1)填空:A、C兩港口間的距離為km,a=;
(2)求y與x的函數(shù)關(guān)系式,并請解釋圖中點P的坐標所表示的實際意義;
(3)在B島有一不間斷發(fā)射信號的信號發(fā)射臺,發(fā)射的信號覆蓋半徑為15km,求該海巡船能接受到該信號的時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“知識改變命運,科技繁榮祖國”.某區(qū)中小學(xué)每年都要舉辦一屆科技比賽.如圖為某區(qū)某校2015年參加科技比賽(包括電子百拼、航模、機器人、建模四個類別)的參賽人數(shù)統(tǒng)計圖:
(1)該校參加機器人、建模比賽的人數(shù)分別是人和人;
(2)該校參加科技比賽的總?cè)藬?shù)是人,電子百拼所在扇形的圓心角的度數(shù)是°,并把條形統(tǒng)計圖補充完整.
(3)從全區(qū)中小學(xué)參加科技比賽選手中隨機抽取85人,其中有34人獲獎.2015年某區(qū)中小學(xué)參加科技比賽人數(shù)共有3625人,請你估算2015年參加科技比賽的獲獎人數(shù)約是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實數(shù)b的取值范圍是( 。
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2

查看答案和解析>>

同步練習(xí)冊答案