(1)觀察發(fā)現(xiàn)

如圖(1):若點A、B在直線m同側(cè),在直線m上找一點P,使AP+BP的值最小,做法如下:

作點B關(guān)于直線m的對稱點B′,連接AB′,與直線m的交點就是所求的點P,線段AB′的長度即為AP+BP的最小值.

如圖(2):在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小,做法如下:

作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為     

(2)實踐運用

如圖(3):已知⊙O的直徑CD為2,的度數(shù)為60°,點B是的中點,在直徑CD上作出點P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為     

(3)拓展延伸

如圖(4):點P是四邊形ABCD內(nèi)一點,分別在邊AB、BC上作出點M,點N,使PM+PN的值最小,保留作圖痕跡,不寫作法.

 

【答案】

解:(1)=。

(2)

(3)拓展延伸:作圖如下:

【解析】

分析:(1)觀察發(fā)現(xiàn):利用作法得到CE的長為BP+PE的最小值:

∵在等邊三角形ABC中,AB=2,點E是AB的中點

∴CE⊥AB,∠BCE=∠BCA=30°,BE=1。

∴CE=BE=。

(2)實踐運用:過B點作弦BE⊥CD,連結(jié)AE交CD于P點,連結(jié)OB、OE、OA、PB,根據(jù)垂徑定理得到CD平分BE,即點E與點B關(guān)于CD對稱,則AE的長就是BP+AP的最小值:

∵BE⊥CD,∴CD平分BE,即點E與點B關(guān)于CD對稱。

的度數(shù)為60°,點B是的中點,∴∠BOC=30°,∠AOC=60°!唷螮OC=30°。

∴∠AOE=60°+30°=90°。

∵OA=OE=1,∴AEOA=。

∵AE的長就是BP+AP的最小值,∴BP+AP的最小值是。

(3)拓展延伸:分別作出點P關(guān)于AB和BC的對稱點E和F,然后連接EF,EF交AB于M、交BC于N。則點M,點N,使PM+PN的值最小。

解:(1)觀察發(fā)現(xiàn):。

(2)實踐運用:

如圖,過B點作弦BE⊥CD,連接AE交CD于P點,連接OB、OE、OA、PB,則點P 即為使BP+AP的值最小的點。

BP+AP的最小值是。

(3)拓展延伸:作圖如下:

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•六盤水)(1)觀察發(fā)現(xiàn)
   如圖(1):若點A、B在直線m同側(cè),在直線m上找一點P,使AP+BP的值最小,做法如下:
   作點B關(guān)于直線m的對稱點B′,連接AB′,與直線m的交點就是所求的點P,線段AB′的長度即為AP+BP的最小值.

   如圖(2):在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小,做法如下:
作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為
3
3

 (2)實踐運用
   如圖(3):已知⊙O的直徑CD為2,
AC
的度數(shù)為60°,點B是
AC 
的中點,在直徑CD上作出點P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為
2
2


  (3)拓展延伸
如圖(4):點P是四邊形ABCD內(nèi)一點,分別在邊AB、BC上作出點M,點N,使PM+PN+MN的值最小,保留作圖痕跡,不寫作法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)觀察發(fā)現(xiàn)

如圖1,⊙O的半徑為1,點P為⊙O外一點,PO=2,在⊙O上找一點M,使得PM最長.
作法如下:作射線PO交⊙O于點M,則點M就是所求的點,此時PM=
3
3

請說明PM最長的理由.
(2)實踐運用
如圖2,在等邊三角形 ABC中,AB=2,以AB為斜邊作直角三角形AMB,使CM最長.
作法如下:以AB為直徑畫⊙O,作射線CO交⊙O右側(cè)于點M,則△AMB即為所求.請按上述方法用三角板和圓規(guī)畫出圖形,并求出CM的長度.
(3)拓展延伸
如圖3,在周長為m的任意形狀的△ABC中,分別以AB、AC為斜邊作直角三角形AMB,直角三角形ANC,使得線段MN最長,用尺規(guī)畫出圖形,此時MN=
0.5m
0.5m
.(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(貴州六盤水卷)數(shù)學(xué)(帶解析) 題型:解答題

(1)觀察發(fā)現(xiàn)
如圖(1):若點A、B在直線m同側(cè),在直線m上找一點P,使AP+BP的值最小,做法如下:
作點B關(guān)于直線m的對稱點B′,連接AB′,與直線m的交點就是所求的點P,線段AB′的長度即為AP+BP的最小值.
如圖(2):在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小,做法如下:
作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為     
(2)實踐運用
如圖(3):已知⊙O的直徑CD為2,的度數(shù)為60°,點B是的中點,在直徑CD上作出點P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為     
(3)拓展延伸
如圖(4):點P是四邊形ABCD內(nèi)一點,分別在邊AB、BC上作出點M,點N,使PM+PN的值最小,保留作圖痕跡,不寫作法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)觀察發(fā)現(xiàn)

   如圖(1):若點A、B在直線m同側(cè),在直線m上找一點P,使AP+BP的值最小,做法如下:

   作點B關(guān)于直線m的對稱點B′,連接AB′,與直線m的交點就是所求的點P,線段AB′的長度即為AP+BP的最小值.

   如圖(2):在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小,做法如下:

作點B關(guān)于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為  

 (2)實踐運用

   如圖(3):已知⊙O的直徑CD為2,的度數(shù)為60°,點B是的中點,在直徑CD上作出點P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為  

  (3)拓展延伸

如圖(4):點P是四邊形ABCD內(nèi)一點,分別在邊AB、BC上作出點M,點N,使PM+PN的值最小,保留作圖痕跡,不寫作法.

查看答案和解析>>

同步練習(xí)冊答案