【題目】已知等腰三角形的一邊等于4cm,一邊等于9cm,那么它的周長(zhǎng)等于_____cm;若等腰三角形的一個(gè)角為70°,則它的另兩個(gè)角是_____.
【答案】22, 70°,40°或55°,55°.
【解析】
分為兩種情況①三角形三邊為4cm,4cm,9cm,②三角形三邊為4cm,9cm,9cm,看是否符合三角形的三邊關(guān)系定理,求出即可;分為兩種情況:①當(dāng)?shù)捉菫?/span>70°時(shí),②當(dāng)頂角為70°時(shí),根據(jù)三角形的內(nèi)角和定理求出即可.
解:∵等腰三角形的一邊等于4cm,一邊等于9cm,
∴分為兩種情況:①三角形三邊為4cm,4cm,9cm,
∵4+4<9,
∴不符合三角形的三邊關(guān)系定理,此種情況不存在;
②三角形三邊為4cm,9cm,9cm,此時(shí)符合三角形的三邊關(guān)系定理,三角形的周長(zhǎng)為4+9+9=22(cm);
∵等腰三角形的一個(gè)角為70°,
∴分為兩種情況:①當(dāng)?shù)捉菫?/span>70°時(shí),頂角為180°﹣70°﹣70°=40°;
②當(dāng)頂角為70°時(shí),底角為×(180°﹣70°)=55°;
即它的另兩個(gè)角是70°,40°或55°,55°,
故答案為:22;70°,40°或55°,55°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,L1,L2分別表示一種白熾燈和一種節(jié)能燈的費(fèi)用y(費(fèi)用=燈的售價(jià)+電費(fèi),單位:元)與照明時(shí)間x(h)的函數(shù)圖像,假設(shè)兩種燈的使用壽命都是2000h,照明效果一樣.
(1)根據(jù)圖像分別求出L1,L2的函數(shù)關(guān)系式.
(2)當(dāng)照明時(shí)間為多少時(shí),兩種燈的費(fèi)用相等?
(3)小亮房間計(jì)劃照明2500h,他買了一個(gè)白熾燈和一個(gè)節(jié)能燈,請(qǐng)你幫他設(shè)計(jì)最省錢的用燈方法(直接給出答案,不必寫出解答過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點(diǎn),且點(diǎn)的橫坐標(biāo)和點(diǎn)的縱坐標(biāo)都是,求:
一次函數(shù)的解析式;(2)的面積.
根據(jù)圖象回答:當(dāng)為何值時(shí),一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AE與CD交于點(diǎn)M,AE與BC交于點(diǎn)N.
(1)求證:AE=CD;
(2)求證:AE⊥CD;
(3)連接BM,有以下兩個(gè)結(jié)論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有 (請(qǐng)寫序號(hào),少選、錯(cuò)選均不得分).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象,根據(jù)圖象回答下列問(wèn)題.
當(dāng)取何值時(shí).
方程的解是什么?
當(dāng)取何值時(shí),?當(dāng)取何值時(shí),?
不等式的解集是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子中裝有顏色不同的8個(gè)小球,其中紅球3個(gè),黑球5個(gè).
(1)先從袋中取出m(m>1)個(gè)紅球,再?gòu)拇须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A.請(qǐng)完成下列表格:
事件A | 必然事件 | 隨機(jī)事件 |
m的值 |
(2)先從袋中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)球是黑球的概率是,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,在△ABC中,∠A是銳角,點(diǎn)D,E分別在AB,AC上,且∠DCB=∠EBC=∠A,BE與CD相交于點(diǎn)O,探究BD與CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)已知四邊形ABCD,連接AC、BD交于O,且滿足條件:AB+CD=AD+BC,AB2+AD2=BC2+DC2,請(qǐng)?zhí)骄?/span>AC與BD的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)舉辦“網(wǎng)絡(luò)安全知識(shí)答題競(jìng)賽”,七、八年級(jí)根據(jù)初賽成績(jī)各選出5名選手組成代表隊(duì)參加決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
七年級(jí) | a | 85 | b | S七年級(jí)2 |
八年級(jí) | 85 | c | 100 | 160 |
(1)根據(jù)圖示填空:a= ,b= ,c= ;
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)代表隊(duì)的決賽成績(jī)較好?
(3)計(jì)算七年級(jí)代表隊(duì)決賽成績(jī)的方差S七年級(jí)2,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“面積法”是指利用圖形面積間的等量關(guān)系尋求線段間等量關(guān)系的一種方法.例如:在△ABC中,AB=AC,點(diǎn)P是BC所在直線上一個(gè)動(dòng)點(diǎn),過(guò)P點(diǎn)作PD⊥AB、PE⊥AC,垂足分別為D、E,BF為腰AC上的高.如圖①,當(dāng)點(diǎn)P在邊BC上時(shí),我們可得如下推理:
∵S△ABC=S△ABP+S△ACP
∴ACBF=ABPD+ACPE
∵AB=AC
∴ACBF=AC(PD+PE)
∴BF=PD+PE
(1)(變式)如圖②,在上例的條件下,當(dāng)點(diǎn)P運(yùn)動(dòng)到BC的延長(zhǎng)線上時(shí),試探究BF、PD、PE之間的關(guān)系,并說(shuō)明理由.
(2)(遷移)如圖③,點(diǎn)P是等邊△ABC內(nèi)部一點(diǎn),作PD⊥AB、PE⊥BC、PF⊥AC,垂足分別為D、E、F,若PD=1,PE=2,PF=4.求△ABC的邊長(zhǎng).
(3)(拓展)若點(diǎn)P是等邊△ABC所在平面內(nèi)一點(diǎn),且點(diǎn)P到三邊所在直線的距離分別為2、3、6.請(qǐng)直接寫出等邊△ABC的高的所有可能
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com