【題目】如圖1,拋物線軸交于點(diǎn)A40),與軸交于點(diǎn)B,在x軸上有一動(dòng)點(diǎn)Em0)(0m4),過(guò)點(diǎn)E軸的垂線交直線AB于點(diǎn)N,交拋物線于點(diǎn)P,過(guò)點(diǎn)PPMAB于點(diǎn)M

1)求的值和直線AB的函數(shù)表達(dá)式;

2)在P點(diǎn)運(yùn)動(dòng)的過(guò)程中,請(qǐng)用含m的代數(shù)式表示線段PN

3)設(shè)PMN的周長(zhǎng)為,AEN的周長(zhǎng)為,若,求m的值;

4)如圖2,在(3)條件下,將線段OE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為αα90°),連接、,求的最小值.

【答案】(1);直線AB解析式為y=;(2)PN=m2+3m ;(3)2;(4)

【解析】試題解析:(1)(1)令y=0,求出拋物線與x軸交點(diǎn),列出方程即可求出a,根據(jù)待定系數(shù)法可以確定直線AB解析式;(2)由△PNM∽△ANE,推出,列出方程即可解決問(wèn)題;(3)在y軸上 取一點(diǎn)M使得OM′=,構(gòu)造相似三角形,可以證明AM′就是的最小值;

試題分析:

1拋物線y=ax2+a+3x+3a≠0)與x軸交于點(diǎn)A40),

a=﹣……………………………………………2

A4,0),B0,3),

設(shè)直線AB解析式為y=kx+b,

解得,

直線AB解析式為y=﹣x+3 ……………………………………………4

設(shè)點(diǎn)Pm,﹣m2+m+3

點(diǎn)N在直線AB上則N

PN=m2+m+3﹣m+3=﹣m2+3m ………………………………6

3)如圖1中,

PMABPEOA,

∴∠PMN=AEN,∵∠PNM=ANE

∴△PNM∽△ANE, ……………………………………………8

=,

NEOB

=,

AN=4﹣m),

PN=m2+m+3m+3=﹣m2+3m

=,

解得m=2 ……………………………………………10

3)如圖2中,在y軸上 取一點(diǎn)M′使得OM′=,連接AM′PEE′

OE′=2,OM′OB=×3=4

OE′2=OM′OB,

=,∵∠BOE′=M′OE′

∴△M′OE′∽△E′OB,

==,

M′E′=BE′

AE′+BE′=AE′+E′M′=AM′,此時(shí)AE′+BE′最。▋牲c(diǎn)間線段最短,AM′、E′共線時(shí)),

最小值=AM′==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是( 。

A. a2a22a4B. (﹣a23a4

C. 3a26a2=﹣3a2D. a32a29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】Rt△ABC中,∠C=90°,點(diǎn)D,E分別是邊AC,BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn)P在線段AB上,如圖①,且∠α=50°,則∠1+∠2=;
(2)若點(diǎn)P在斜邊AB上運(yùn)動(dòng),如圖②,則∠α、∠1、∠2之間的關(guān)系為;
(3)如圖③,若點(diǎn)P在斜邊BA的延長(zhǎng)線上運(yùn)動(dòng)(CE<CD),請(qǐng)直接寫出∠α、∠1、∠2之間的關(guān)系:;
(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外(只需研究圖④情形),則∠α、∠1、∠2之間有何關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1) + × +
(2)(﹣3)2 ﹣|1﹣2 |﹣( ﹣3)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:ab22a2b+a2___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(6a3b4)÷(3a2b)=( 。

A. 2 B. 2ab3 C. 3ab3 D. 2a5b5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】起重機(jī)將重物垂直提起,這可以看作為數(shù)學(xué)上的_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:2a3+2ab2-4a2b=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為鼓勵(lì)居民節(jié)約用電,我市自2012年以來(lái)對(duì)家庭用電收費(fèi)實(shí)行階梯電價(jià),即每月對(duì)每戶居民的用電量分為三個(gè)檔級(jí)收費(fèi),第一檔為用電量在180千瓦時(shí)(含180千瓦時(shí))以內(nèi)的部分,執(zhí)行基本價(jià)格;第二檔為用電量在180千瓦時(shí)到450千瓦時(shí)(含450千瓦時(shí))的部分,實(shí)行提高電價(jià);第三檔為用電量超出450千瓦時(shí)的部分,執(zhí)行市場(chǎng)調(diào)節(jié)價(jià)格. 我市一位同學(xué)家今年2月份用電330千瓦時(shí),電費(fèi)為213元,3月份用電240千瓦時(shí),電費(fèi)為150元.已知我市的一位居民今年4、5月份的家庭用電量分別為160和 410千瓦時(shí),請(qǐng)你依據(jù)該同學(xué)家的繳費(fèi)情況,計(jì)算這位居民4、5月份的電費(fèi)分別為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案