【題目】若平面內(nèi)兩點(diǎn)P1x1,y2),P2x2y2),其兩點(diǎn)間的距離P1P2

例如:已知A31),B5,2),則這兩點(diǎn)間的距離AB

已知A3,1),B5,2),C44

1)聰明的你能判定ABC的形狀嗎?并說明理由

2)若以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形是平行四邊形時(shí),請(qǐng)直接寫出點(diǎn)D的坐標(biāo).

【答案】1ABC是等腰直角三角形,理由見解析;(2D的坐標(biāo)為(2,3)或(65)或(4,-1

【解析】

1)根據(jù)兩點(diǎn)間距離公式求得AB、ACBC的長度,再根據(jù)勾股定理判斷ABC的形狀;

2)分別以AB、BC、AC為對(duì)角線時(shí),分別得出D的坐標(biāo)即可.

1ABC是等腰直角三角形,理由如下:

根據(jù)兩點(diǎn)間距離公式可得:

A31),B5,2),C4,4),

AB=,AC=BC=,

AB2+BC2AC2,AB=BC

∴△ABC是等腰直角三角形.

2)如圖所示:

當(dāng)以AC為對(duì)角線時(shí),D的坐標(biāo)為(2,3);

當(dāng)以BC為對(duì)角線時(shí),D的坐標(biāo)為(65);

當(dāng)以AB為對(duì)角線時(shí),D的坐標(biāo)為(4,-1);

綜上可得,D的坐標(biāo)為(23)或(6,5)或(4,-1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某店只銷售某種進(jìn)價(jià)為40/kg的產(chǎn)品,已知該店按60kg出售時(shí),每天可售出100kg,后來經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低1元,則每天的銷售量可增加10kg.

(1)若單價(jià)降低2元,則每天的銷售量是_____千克,每天的利潤為_____元;若單價(jià)降低x元,則每天的銷售量是_____千克,每天的利潤為______元;(用含x的代數(shù)式表示)

(2)若該店銷售這種產(chǎn)品計(jì)劃每天獲利2240元,單價(jià)應(yīng)降價(jià)多少元?

(3)當(dāng)單價(jià)降低多少元時(shí),該店每天的利潤最大,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為美化環(huán)境,某校計(jì)劃在一塊長為60米,寬為40米的長方形空地上修建一個(gè)長方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為a米.

1)當(dāng)a=10米時(shí),花圃的面積=

2)通道的面積與花圃的面積之比能否恰好等于3:5,如果可以,求出此時(shí)通道的寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的公路上依次有A,C,B三地,甲、乙兩人同時(shí)出發(fā),甲從A地騎自行車去B地,途經(jīng)C地休息1分鐘,繼續(xù)按原速騎行至B地,甲到達(dá)B地后,立即按原路原速返回A地;乙步行從B地前往A地.甲、乙兩人距A地的路程y(米)與時(shí)間x(分)之間的函數(shù)關(guān)系如圖所示,請(qǐng)結(jié)合圖象解答下列問題:

(1)請(qǐng)寫出甲的騎行速度為   米/分,點(diǎn)M的坐標(biāo)為   ;

(2)求甲返回時(shí)距A地的路程y與時(shí)間x之間的函數(shù)關(guān)系式(不需要寫出自變量的取值范圍);

(3)請(qǐng)直接寫出兩人出發(fā)后,在甲返回A地之前,經(jīng)過多長時(shí)間兩人距C地的路程相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A、C分別在y軸、x軸上,且∠ACB=90°,AC=BC

1)如圖1,當(dāng),點(diǎn)B在第四象限時(shí),則點(diǎn)B的坐標(biāo)為 ;

2)如圖2,當(dāng)點(diǎn)Cx軸正半軸上運(yùn)動(dòng),點(diǎn)Ay軸正半軸上運(yùn)動(dòng),點(diǎn)B在第四象限時(shí),作BDy軸于點(diǎn)D,試判斷哪一個(gè)是定值,并說明定值是多少?請(qǐng)證明你的結(jié)論.(溫馨提示:本題定值就是某一個(gè)固定的常數(shù)值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點(diǎn)A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】傳統(tǒng)的端午節(jié)即將來臨,某企業(yè)接到一批粽子生產(chǎn)任務(wù),約定這批粽子的出廠價(jià)為每只4元,按要求在20天內(nèi)完成.為了按時(shí)完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李明第x天生產(chǎn)的粽子數(shù)量為y只,yx滿足如下關(guān)系:

y=

(1)李明第幾天生產(chǎn)的粽子數(shù)量為280只?

(2)如圖,設(shè)第x天生產(chǎn)的每只粽子的成本是p元,px之間的關(guān)系可用圖中的函數(shù)圖象來刻畫.若李明第x天創(chuàng)造的利潤為w元,求wx之間的函數(shù)表達(dá)式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠ABC的平分線交⊙O于點(diǎn)D,DEBC于點(diǎn)E.

(1)試判斷DE與⊙O的位置關(guān)系,并說明理由;

(2)過點(diǎn)DDFAB于點(diǎn)F,若BE=3,DF=3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點(diǎn)C從A點(diǎn)出發(fā),在邊AO上以4cm/s的速度向O點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)D從點(diǎn)B出發(fā),在邊BO上以3cm/s的速度向O點(diǎn)運(yùn)動(dòng),過OC的中點(diǎn)E作CD的垂線EF,則當(dāng)點(diǎn)C運(yùn)動(dòng)了________s時(shí),以C點(diǎn)為圓心,2cm為半徑的圓與直線EF相切.

查看答案和解析>>

同步練習(xí)冊(cè)答案