【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點A、B、C、D、M、N均在同一平面內(nèi),CM∥AN).
(1)求燈桿CD的高度;
(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大。
閱讀下面的解答過程,并填空(理由或數(shù)學式)
解:∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性質(zhì))
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】CD經(jīng)過∠BCA頂點C的一條直線,CA=CB,E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠,
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線CD上,請解決下面兩個問題:
①如圖1,若∠BCA=90°,∠=90°,則BE_____CF;EF____.(填“>”“<”或“=”)
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關于∠與∠BCA關系的條件__________,使①中的兩個結(jié)論仍然成立,并證明兩個結(jié)論成立.
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠=∠BCA,請?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關系的合理猜想(不要求證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“母親節(jié)”前夕,我市某校學生積極參與“關愛貧困母親”的活動,他們購進一批單價為20元的“孝文化衫”在課余時間進行義賣,要求每件銷售價格不得高于27元,并將所得利潤捐給貧困母親。經(jīng)試驗發(fā)現(xiàn),若每件按22元的價格銷售時,每天能賣出42件;若每件按25元的價格銷售時,每天能賣出33件.假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足一個以x為自變量的一次函數(shù).
(1)求y與x滿足的函數(shù)關系式(不要求寫出x的取值范圍);
(2)在不積壓且不考慮其他因素的情況下,銷售價格定為多少元時,才能使每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題情境)如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
(1)(問題解決)延長AD到點E使DE=AD,再連接BE(或?qū)ⅰ?/span>ACD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關系即可判斷出中線AD的取值范圍是 .
(反思感悟)解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮構(gòu)造以該中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同個三角形中,從而解決問題.
(2)(嘗試應用)如圖②,△ABC中,∠BAC=90°,AD是BC邊上的中線,試猜想線段AB,AC,AD之間的數(shù)量關系,并說明理由.
(3)(拓展延伸)如圖③,△ABC中,∠BAC=90°,D是BC的中點,DM⊥DN,DM交AB于點M,DN交AC于點N,連接MN.當BM=4,MN=5,AC=6時,請直接寫出中線AD的取值范圍.(溫馨提示:如果設直角三角形的兩條直角邊長度分別是a和b,斜邊長度是c,那么可以用數(shù)學語言表達三邊關系,a2+b2=c2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠A=30°,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是( 。
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x2﹣x+與x軸交于點A,B(點A在點B的左邊),與y軸交于點C,點D是該拋物線的頂點.
(1)如圖1,連接CD,求線段CD的長;
(2)如圖2,點P是直線AC上方拋物線上一點,PF⊥x軸于點F,PF與線段AC交于點E;將線段OB沿x軸左右平移,線段OB的對應線段是O1B1,當PE+EC的值最大時,求四邊形PO1B1C周長的最小值,并求出對應的點O1的坐標;
(3)如圖3,點H是線段AB的中點,連接CH,將△OBC沿直線CH翻折至△O2B2C的位置,再將△O2B2C繞點B2旋轉(zhuǎn)一周在旋轉(zhuǎn)過程中,點O2,C的對應點分別是點O3,C1,直線O3C1分別與直線AC,x軸交于點M,N.那么,在△O2B2C的整個旋轉(zhuǎn)過程中,是否存在恰當?shù)奈恢,使?/span>AMN是以MN為腰的等腰三角形?若存在,請直接寫出所有符合條件的線段O2M的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.袋中有形狀、大小、質(zhì)地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球
B.天氣預報“明天降水概率10%”,是指明天有10%的時間會下雨
C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com