如圖,點(diǎn)E在AC的延長線上,下列條件中能判斷AB∥CD的是( )
A.∠3=∠4
B.∠D=∠DCE
C.∠1=∠2
D.∠D+∠ACD=180°
【答案】分析:由平行線的判定定理可證得,A,C,D能證得AC∥BD,只有B能證得AB∥CD.注意掌握排除法在選擇題中的應(yīng)用.
解答:解:A、∵∠3=∠4,
∴AC∥BD.
故本選項(xiàng)不能判斷AB∥CD;
B、∵∠D=∠DCE,
∴AC∥BD.
故本選項(xiàng)不能判斷AB∥CD;
C、∵∠1=∠2,
∴AB∥CD.
故本選項(xiàng)能判斷AB∥CD;
D、∵∠D+∠ACD=180°,
∴AC∥BD.
故本選項(xiàng)不能判斷AB∥CD.
故選C.
點(diǎn)評:此題考查了平行線的判定.注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,DE是△ABC的中位線,點(diǎn)F在AC延長上,且CF=
12
AC.求證:四邊形ADEF是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB=2,AB、CD是⊙O的兩條直徑,M為弧AB的中點(diǎn),C在弧MB上運(yùn)動(dòng),點(diǎn)P在AB的延長上,且PC=AC,作CE⊥AP于E,連接DP交⊙O于F.
(1)求證:當(dāng)AC=
3
時(shí),PC與⊙O相切;
(2)在PC與⊙O相切的條件下,求sin∠APD的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•遵義)如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,E為BC邊上的一點(diǎn),以A為圓心,AE為半徑的圓弧交AB于點(diǎn)D,交AC的延長于點(diǎn)F,若圖中兩個(gè)陰影部分的面積相等,則AF的長為
2
π
π
2
π
π
(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知AB=2,AB、CD是⊙O的兩條直徑,M為弧AB的中點(diǎn),C在弧MB上運(yùn)動(dòng),點(diǎn)P在AB的延長上,且PC=AC,作CE⊥AP于E,連接DP交⊙O于F.
(1)求證:當(dāng)AC=數(shù)學(xué)公式時(shí),PC與⊙O相切;
(2)在PC與⊙O相切的條件下,求sin∠APD的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年上海市黃浦區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,已知AB=2,AB、CD是⊙O的兩條直徑,M為弧AB的中點(diǎn),C在弧MB上運(yùn)動(dòng),點(diǎn)P在AB的延長上,且PC=AC,作CE⊥AP于E,連接DP交⊙O于F.
(1)求證:當(dāng)AC=時(shí),PC與⊙O相切;
(2)在PC與⊙O相切的條件下,求sin∠APD的值?

查看答案和解析>>

同步練習(xí)冊答案