解:(1)等腰直角三角形.
∵a
2-2ab+b
2=0,
∴(a-b)
2=0,
∴a=b,
∵∠AOB=90°,
∴△AOB為等腰直角三角形;
(2)∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90°,
∴∠MAO=∠MOB,
∵AM⊥OQ,BN⊥OQ,
∴∠AMO=∠BNO=90°,
在△MAO和△BON中,
,
∴△MAO≌△NOB,
∴OM=BN,AM=ON,OM=BN,
∴MN=ON-OM=AM-BN=5;
(3)PO=PD且PO⊥PD,
如圖,延長DP到點C,使DP=PC,連接CP、OD、OC、BC,
在△DEP和△CBP,
.
∴△DEP≌△CBP,
∴CB=DE=DA,∠DEP=∠CBP=135°,
則∠CBO=∠CBP-∠ABO=135°-45°=90°,
又∵∠BAO=45°,∠DAE=45°,
∴∠DAO=90°,
在△OAD和△OBC,
,
∴△OAD≌△OBC,
∴OD=OC,∠AOD=∠COB,
∴△DOC為等腰直角三角形,
∴PO=PD,且PO⊥PD.
分析:(1)已知a
2-2ab+b
2=0,化簡可得a=b,然后可得△AOB為等腰直角三角形;
(2)證明△MAO≌△NOB,求出OM=BN;AM=ON;OM=BN;然后求出MN的值;
(3)本題要靠輔助線的幫助.證明與之有關(guān)的三角形全等之后方可解答.
點評:本題中點考查的是全等三角形的判定以及一次函數(shù)的相關(guān)知識,難度中等.