【題目】某班13位同學(xué)參加每周一次的衛(wèi)生大掃除,按學(xué)校的衛(wèi)生要求需要完成總面積為60m2的三個(gè)項(xiàng)目的任務(wù),三個(gè)項(xiàng)目的面積比例和每人每分鐘完成各所示:項(xiàng)目的工作量如圖:
(1)從統(tǒng)計(jì)圖中可知:擦玻璃的面積占總面積的百分比為 , 每人每分鐘擦課桌椅m2;
(2)掃地拖地的面積是m2;
(3)他們一起完成掃地和拖地任務(wù)后,把這13人分成兩組,一組去擦玻璃,一組去擦課桌椅,如果你是衛(wèi)生委員,該如何分配這兩組的人數(shù),才能最快地完成任務(wù)?
【答案】
(1)20%;
(2)33
(3)設(shè)擦玻璃x人,則擦課桌椅(13﹣x)人,根據(jù)題意得:
( x):[ (13﹣x)]=12:15,
解得:x=8,
經(jīng)檢驗(yàn)x=8是原方程的解.
答:擦玻璃8人,擦課桌椅5人.
【解析】解:(1)根據(jù)題意得: 擦玻璃的面積占總面積的百分比是:1﹣55%﹣25%=20%;
每人每分鐘擦課桌椅 m2;
所以答案是:20%, ;
⑵掃地拖地的面積是60×55%=33(m2);
所以答案是:33.
【考點(diǎn)精析】關(guān)于本題考查的分式方程的應(yīng)用和扇形統(tǒng)計(jì)圖,需要了解列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫(xiě)出答案(要有單位);能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一塊含30°角的直角三角版和半圓量角器按如圖的方式擺放,使斜邊與半圓相切.若半徑OA=4,則圖中陰影部分的面積為 . (結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹(shù)木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹(shù)木的利潤(rùn)y1與投資成本x成正比例關(guān)系,種植花卉的利潤(rùn)y2與投資成本x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù);
投資量x(萬(wàn)元) | 2 |
種植樹(shù)木的利潤(rùn)y1(萬(wàn)元) | 4 |
種植花卉的利潤(rùn)y2(萬(wàn)元) | 2 |
(1)分別求出利潤(rùn)y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶計(jì)劃以8萬(wàn)元資金投入種植花卉和樹(shù)木,設(shè)他投入種植花卉金額萬(wàn)元,種植花卉和樹(shù)木共獲利潤(rùn)W萬(wàn)元,求出W與m之間的函數(shù)關(guān)系式,并求他至少獲得多少利潤(rùn)?他能獲取的最大利潤(rùn)是多少?
(3)若該專業(yè)戶想獲利不低于22萬(wàn)元,在(2)的條件下,求出投資種植花卉的金額m的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù) 的圖象交于C、D兩點(diǎn),DE⊥x軸于點(diǎn)E.已知C點(diǎn)的坐標(biāo)是(6,﹣1),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式.
(2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A,B的坐標(biāo)分別為(﹣2,3)和(1,3),拋物線y=ax2+bx+c(a<0)的頂點(diǎn)在線段AB上運(yùn)動(dòng)時(shí),形狀保持不變,且與x軸交于C,D兩點(diǎn)(C在D的左側(cè)),給出下列結(jié)論:①c<3;②當(dāng)x<﹣3時(shí),y隨x的增大而增大;③若點(diǎn)D的橫坐標(biāo)最大值為5,則點(diǎn)C的橫坐標(biāo)最小值為﹣5;④當(dāng)四邊形ACDB為平行四邊形時(shí), .其中正確的是( )
A.②④
B.②③
C.①③④
D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論: ①4ac<b2;
②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0;
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3;
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,AB是⊙O的直徑,點(diǎn)P在AB的延長(zhǎng)線上,弦CE交AB于點(diǎn),連結(jié)OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,且PB=9,求⊙O的半徑長(zhǎng)和tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y= (x<0)的圖象交于點(diǎn)A(﹣1,m),與x軸交于點(diǎn)B(1,0)
(1)求m的值;
(2)求直線AB的解析式;
(3)若直線x=t(t>1)與直線y=kx+b交于點(diǎn)M,與x軸交于點(diǎn)N,連接AN,S△AMN= ,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點(diǎn)D,過(guò)D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com