【題目】如圖,ABCD的周長(zhǎng)為16cm,AC、BD相交于點(diǎn)O,OE⊥AC交AD于E,則△DCE的周長(zhǎng)為cm.

【答案】8
【解析】解:∵平行四邊形ABCD, ∴AD=BC,AB=CD,OA=OC,
∵EO⊥AC,
∴AE=EC,
∵AB+BC+CD+AD=16,
∴AD+DC=8,
∴△DCE的周長(zhǎng)是:CD+DE+CE=AE+DE+CD=AD+CD=8,
所以答案是:8.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用線段垂直平分線的性質(zhì)和平行四邊形的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等;平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形OABC的邊長(zhǎng)為6,點(diǎn)A、C分別在x軸,y軸的正半軸上,點(diǎn)D(2,0)在OA上,P是OB上一動(dòng)點(diǎn),則PA+PD的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)是(﹣2,0),點(diǎn)B的坐標(biāo)是(6,0),點(diǎn)C在第一象限內(nèi)且△OBC為等邊三角形,直線BC交y軸于點(diǎn)D,過(guò)點(diǎn)A作直線AE⊥BD,垂足為E,交OC于點(diǎn)F.

(1)求直線BD的函數(shù)表達(dá)式;
(2)求線段OF的長(zhǎng);
(3)連接BF,OE,試判斷線段BF和OE的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程(或方程組)解應(yīng)用題:
(1)某服裝店到廠家選購(gòu)甲、乙兩種服裝,若購(gòu)進(jìn)甲種服裝9件、乙種服裝10件,需1810元;購(gòu)進(jìn)甲種服裝11件乙種服裝8件,需1790元,求甲乙兩種服裝每件價(jià)格相差多少元?
(2)某工廠現(xiàn)庫(kù)存某種原料1200噸,用來(lái)生產(chǎn)A、B兩種產(chǎn)品,每生產(chǎn)1噸A產(chǎn)品需這種原料2噸、生產(chǎn)費(fèi)用1000元;每生產(chǎn)1噸B產(chǎn)品需這種原料2.5噸、生產(chǎn)費(fèi)用900元,如果用來(lái)生產(chǎn)這兩種產(chǎn)品的資金為53萬(wàn)元,那么A、B兩種產(chǎn)品各生產(chǎn)多少?lài)嵅拍苁箮?kù)存原料和資金恰好用完?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,將二次函數(shù)y=(x22+2的圖象向左平移2個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,OC是∠AOD的平分線,OE是∠BOD的平分線.

(1)若∠AOB=120°,則∠COE是多少度?
(2)若∠EOC=65°,∠DOC=25°,則∠BOE是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知相似三角形ABCABC的面積比為14,則它們的相似比為(  )

A.14B.13C.12D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,真命題是( ) .

A. 對(duì)角線相等的四邊形是矩形;

B. 對(duì)角線互相垂直的四邊形是菱形;

C. 對(duì)角線互相平分的四邊形是平行四邊形;

D. 對(duì)角線互相垂直平分的四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(a﹣1,a+1)在x軸上,則a=

查看答案和解析>>

同步練習(xí)冊(cè)答案