精英家教網 > 初中數學 > 題目詳情
閱讀并解答:
①方程x2-2x+1=0的根是x1=x2=1,則有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=,x2=,則有x1+x2=,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-,x2=1,則有x1+x2=-,x1x2=-
(1)根據以上①②③請你猜想:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數根為x1,x2,那么x1,x2與系數a、b、c有什么關系?請寫出你的猜想并證明你的猜想;
(2)利用你的猜想結論,解決下面的問題:
已知關于x的方程x2+(2k+1)x+k2-2=0有實數根x1,x2,且x12+x22=11,求k的值.
【答案】分析:(1)由①②③中兩根之和與兩根之積的結果可以看出,兩根之和正好等于一次項系數與二次項系數之比的相反數,兩根之積正好等于常數項與二次項系數之比.
(2)欲求k的值,先把代數式x12+x22變形為兩根之積或兩根之和的形式,然后與兩根之和公式、兩根之積公式聯立組成方程組,解方程組即可求k值.
解答:解:(1)猜想為:設ax2+bx+c=0(a≠0)的兩根為x1、x2,則有,
理由:設x1、x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,
那么由求根公式可知,,
于是有,
綜上得,設ax2+bx+c=0(a≠0)的兩根為x1、x2,則有,

(2)x1、x2是方程x2+(2k+1)x+k2-2=0的兩個實數根
∴x1+x2=-(2k+1),x1x2=k2-2,
又∵x12+x22=x12+x22+2x1x2-2x1x2=(x1+x22-2x1x2
∴[-(2k+1)]2-2×(k2-2)=11
整理得k2+2k-3=0,
解得k=1或-3,
又∵△=[-(2k+1)]2-4(k2-2 )≥0,解得k≥-,
∴k=1.
點評:本題考查了學生的總結和分析能力,善于總結,善于發(fā)現,學會分析是學好數學必備的能力.
將根與系數的關系與代數式變形相結合解題是一種經常使用的解題方法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

閱讀并解答:
①方程x2-2x+1=0的根是x1=x2=1,則有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=
1+
17
4
,x2=
1-
17
4
,則有x1+x2=
1
2
,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-
7
3
,x2=1,則有x1+x2=-
4
3
,x1x2=-
7
3

(1)根據以上①②③請你猜想:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數根為x1,x2,那么x1,x2與系數a、b、c有什么關系?請寫出你的猜想并證明你的猜想;
(2)利用你的猜想結論,解決下面的問題:
已知關于x的方程x2+(2k+1)x+k2-2=0有實數根x1,x2,且x12+x22=11,求k的值.

查看答案和解析>>

科目:初中數學 來源:安徽省期中題 題型:解答題

閱讀并解答:
①方程x2﹣2x+1=0的根是x1=x2=1,則有x1+x2=2,x1x2=1.
②方程x2﹣x﹣2=0的根是x1=,x2=,則有x1+x2=,x1x2=﹣1.
③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,則有x1+x2=﹣,x1x2=﹣
(1)根據以上①②③請你猜想:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數根為x1,x2,那么x1,x2與系數a、b、c有什么關系?請寫出你的猜想并證明你的猜想;
(2)利用你的猜想結論,解決下面的問題:已知關于x的方程x2+(2k+1)x+k2﹣2=0有實數根x1,x2,且x12+x22=11,求k的值.

查看答案和解析>>

科目:初中數學 來源:2011-2012學年安徽省巢湖市九年級(上)期中數學試卷(解析版) 題型:解答題

閱讀并解答:
①方程x2-2x+1=0的根是x1=x2=1,則有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=,x2=,則有x1+x2=,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-,x2=1,則有x1+x2=-,x1x2=-
(1)根據以上①②③請你猜想:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數根為x1,x2,那么x1,x2與系數a、b、c有什么關系?請寫出你的猜想并證明你的猜想;
(2)利用你的猜想結論,解決下面的問題:
已知關于x的方程x2+(2k+1)x+k2-2=0有實數根x1,x2,且x12+x22=11,求k的值.

查看答案和解析>>

科目:初中數學 來源:第2章《一元二次方程》中考題集(15):2.3 公式法(解析版) 題型:解答題

閱讀并解答:
①方程x2-2x+1=0的根是x1=x2=1,則有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=,x2=,則有x1+x2=,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-,x2=1,則有x1+x2=-,x1x2=-
(1)根據以上①②③請你猜想:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數根為x1,x2,那么x1,x2與系數a、b、c有什么關系?請寫出你的猜想并證明你的猜想;
(2)利用你的猜想結論,解決下面的問題:
已知關于x的方程x2+(2k+1)x+k2-2=0有實數根x1,x2,且x12+x22=11,求k的值.

查看答案和解析>>

科目:初中數學 來源:2009-2010學年安徽省巢湖市九年級(上)期中數學試卷(解析版) 題型:解答題

閱讀并解答:
①方程x2-2x+1=0的根是x1=x2=1,則有x1+x2=2,x1x2=1.
②方程2x2-x-2=0的根是x1=,x2=,則有x1+x2=,x1x2=-1.
③方程3x2+4x-7=0的根是x1=-,x2=1,則有x1+x2=-,x1x2=-
(1)根據以上①②③請你猜想:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數根為x1,x2,那么x1,x2與系數a、b、c有什么關系?請寫出你的猜想并證明你的猜想;
(2)利用你的猜想結論,解決下面的問題:
已知關于x的方程x2+(2k+1)x+k2-2=0有實數根x1,x2,且x12+x22=11,求k的值.

查看答案和解析>>

同步練習冊答案