【題目】如圖,已知ABCD,∠1=2,CF平分∠DCE

1)試判斷直線ACBD有怎樣的位置關(guān)系?并說(shuō)明理由;

2)若∠1=80°,求∠3的度數(shù).

【答案】1ACBD,理由見(jiàn)解析;(250°

【解析】

1)先根據(jù)ABCD得出∠2=CDF,再由∠1=2即可得出結(jié)論;
2)先求出∠ECD的度數(shù),再由角平分線的性質(zhì)求出∠ECF的度數(shù),根據(jù)平行線的性質(zhì)即可得出結(jié)論.

解:(1ACBD

理由:∵ABCD,

∴∠2=CDF

∵∠1=2,

∴∠1=CDF,

ACBD;

2)∵∠1=80°,

∴∠ECD=180°-1=180°-80°=100°

CF平分∠ECD

∴∠ECF=ECD=×100°=50°

ACBD,

∴∠3=ECF=50°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā),沿折線ABCD方向以3cm/s的速度勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)D出發(fā),沿線段DC方向以2cm/s的速度勻速運(yùn)動(dòng). 已知兩點(diǎn)同時(shí)出發(fā),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).

(1)求CD的長(zhǎng);
(2)當(dāng)四邊形PBQD為平行四邊形時(shí),求四邊形PBQD的周長(zhǎng);
(3)在點(diǎn)P、Q的運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使得△BPQ的面積為20cm2?若存在,請(qǐng)求出所有滿(mǎn)足條件的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲所示,若將陰影兩部分裁剪下來(lái)重新拼成一個(gè)正方形,所拼正方形如圖乙.

圖甲的長(zhǎng)是______,寬是______,面積是______寫(xiě)成兩式乘積形式;如圖乙所示,陰影部分的面積是______寫(xiě)成多項(xiàng)式的形式

比較圖甲和圖乙中陰影部分的面積,可得乘法公式______

運(yùn)用你所得到的公式,計(jì)算下列各題:

;

;

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1);
(2)先化簡(jiǎn),再選一個(gè)你喜歡的數(shù)求值.
(1)(﹣2016)0+| ﹣2|+ +3tan30°
(2)先化簡(jiǎn)(a2﹣a)÷ ,再選一個(gè)你喜歡的數(shù)求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“佳佳商場(chǎng)”在銷(xiāo)售某種進(jìn)貨價(jià)為20元/件的商品時(shí),以30元/件售出,每天能售出100件.調(diào)查表明:這種商品的售價(jià)每上漲1元/件,其銷(xiāo)售量就將減少2件.
(1)為了實(shí)現(xiàn)每天1600元的銷(xiāo)售利潤(rùn),“佳佳商場(chǎng)”應(yīng)將這種商品的售價(jià)定為多少?
(2)物價(jià)局規(guī)定該商品的售價(jià)不能超過(guò)40元/件,“佳佳商場(chǎng)”為了獲得最大的利潤(rùn),應(yīng)將該商品售價(jià)定為多少?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=1,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義正整數(shù)mn的運(yùn)算,mn

23,34

132的值為 運(yùn)算符號(hào)“△”滿(mǎn)足交換律嗎?回答 (填“是”或者“否”)

2)探究:計(jì)算210的值.

為解決上面的問(wèn)題,我們運(yùn)用數(shù)形結(jié)合的思想方法,通過(guò)不斷的分割一個(gè)面積為1的正方形,把數(shù)量關(guān)系和幾何圖形結(jié)合起來(lái),最終解決問(wèn)題.

如圖所示,第1次分割把正方形的面積二等分,其中陰影部分的面積為,第2次,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影分的面積之和為,第3次分割把上次分割圖中空白部分的面積繼續(xù)二等分……以此類(lèi)推……第10次分割,把第9次分割后的圖中的空日部分的面積最后二等分,所有陰影部分面積之和為

根據(jù)第10次分割圖可以得出計(jì)結(jié)果:1,進(jìn)一步分析可得出1,

3)已知n是正整數(shù),計(jì)算3×(4n)=的結(jié)果.

按指定方法解決問(wèn)題請(qǐng)仿照以上做法,只需畫(huà)出第n次分割圖并作標(biāo)注,寫(xiě)出最終結(jié)果的推理步驟,或借用以上結(jié)論進(jìn)行推理,寫(xiě)出必要的步驟.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形OABC的邊OC、OA分別在x、y軸的正半軸上,點(diǎn)B坐標(biāo)為(10,10),點(diǎn)P從O出發(fā)沿O→C→B運(yùn)動(dòng),速度為1個(gè)單位每秒,連接AP.設(shè)運(yùn)動(dòng)時(shí)間為t.

(1)若拋物線y=﹣(x﹣h)2+k經(jīng)過(guò)A,B兩點(diǎn),求拋物線函數(shù)關(guān)系式;
(2)當(dāng)0≤t≤10時(shí),如圖1,過(guò)點(diǎn)O作OH⊥AP于點(diǎn)H,直線OH交邊BC于點(diǎn)D,連接AD,PD,設(shè)△APD的面積為S,求S的最小值;
(3)在圖2中以A為圓心,OA長(zhǎng)為半徑作⊙A,當(dāng)0≤t≤20時(shí),過(guò)點(diǎn)P作PQ⊥x軸(Q在P的上方),且線段PQ=t+12:
①當(dāng)t在什么范圍內(nèi),線段PQ與⊙A只有一個(gè)公共點(diǎn)?當(dāng)t在什么范圍內(nèi),線段PQ與⊙A有兩個(gè)公共點(diǎn)?
②請(qǐng)將①中求得的t的范圍作為條件,證明:當(dāng)t取該范圍內(nèi)任何值時(shí),線段PQ與⊙A總有兩個(gè)公共點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司組織員工到附近的景點(diǎn)旅游,根據(jù)旅行社提供的收費(fèi)方案,繪制了如圖所示的圖象,圖中折線ABCD表示人均收費(fèi)y(元)與參加旅游的人數(shù)x(人)之間的函數(shù)關(guān)系.

(1)當(dāng)參加旅游的人數(shù)不超過(guò)10人時(shí),人均收費(fèi)為元;
(2)如果該公司支付給旅行社3600元,那么參加這次旅游的人數(shù)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案