【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長(zhǎng)為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732, ≈1.732, ≈1.414)

【答案】解:延長(zhǎng)FE交CB的延長(zhǎng)線于M,過(guò)A作AG⊥FM于G,
在Rt△ABC中,tan∠ACB= ,
∴AB=BCtan75°=0.60×3.732=2.0292,
∴GM=AB=2.0292,
在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG= ,
∴sin60°= = ,
∴FG=4.33,
∴DM=FG+GM﹣DF≈5.01米,
答:籃框D到地面的距離是5.01米.
【解析】延長(zhǎng)FE交CB的延長(zhǎng)線于M,過(guò)A作AG⊥FM于G,解直角三角形即可得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD直線m, CE直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=AC,D、A、E三點(diǎn)都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

3拓展與應(yīng)用:如圖3,D、ED、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)FBAC平分線上的一點(diǎn),ABFACF均為等邊三角形,連接BD、CE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=ax2+bx+c經(jīng)過(guò)平行四邊形ABCD的頂點(diǎn)A(0,3)、B(﹣1,0)、D(2,3),拋物線與x軸的另一交點(diǎn)為E.經(jīng)過(guò)點(diǎn)E的直線l將平行四邊形ABCD分割為面積相等兩部分,與拋物線交于另一點(diǎn)F.點(diǎn)P在直線l上方拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t

(1)求拋物線的解析式;
(2)當(dāng)t何值時(shí),△PFE的面積最大?并求最大值的立方根;
(3)是否存在點(diǎn)P使△PAE為直角三角形?若存在,求出t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠APB=60°,連接PO并延長(zhǎng)與⊙O交于C點(diǎn),連接AC,BC.
(1)求證:四邊形ACBP是菱形;
(2)若⊙O半徑為1,求菱形ACBP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一條折線A1B1A2B2A3B3A4B4…,它是由過(guò)A1(0,0),B1(2,2),A2(4,0)組成的折線依次平移4,8,12,…個(gè)單位得到的,直線y=kx+2與此折線恰有2n(n≥1,且為整數(shù))個(gè)交點(diǎn),則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A( ,0)是 軸上一點(diǎn),以O(shè)A為對(duì)角線作菱形OBAC,使得 60°,現(xiàn)將拋物線 沿直線OC平移到 ,則當(dāng)拋物線與菱形的AB邊有公共點(diǎn)時(shí),則m的取值范圍是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A,C分別在x,y軸的正半軸上,已知點(diǎn)B(4,2),將矩形OABC翻折,使得點(diǎn)C的對(duì)應(yīng)點(diǎn)P恰好落在線段OA(包括端點(diǎn)O,A)上,折痕所在直線分別交BC、OA于點(diǎn)D、E;若點(diǎn)P在線段OA上運(yùn)動(dòng)時(shí),過(guò)點(diǎn)P作OA的垂線交折痕所在直線于點(diǎn)Q.

(1)求證:CQ=QP
(2)設(shè)點(diǎn)Q的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)如圖2,連結(jié)OQ,OB,當(dāng)點(diǎn)P在線段OA上運(yùn)動(dòng)時(shí),設(shè)三角形OBQ的面積為S,當(dāng)x取何值時(shí),S取得最小值,并求出最小值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱柱ABCD﹣A1B1C1D1中,四邊形ABCD為平行四邊形,AA1⊥平面ABCD,∠BAD=60°,AB=2,BC=1.AA1= ,E為A1B1的中點(diǎn).
(1)求證:平面A1BD⊥平面A1AD;
(2)求多面體A1E﹣ABCD的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人投擲飛鏢,他們的成績(jī)(環(huán)數(shù))如下面的頻數(shù)條統(tǒng)計(jì)圖所示.則甲、乙、丙三人的訓(xùn)練成績(jī)方差S2 , S2 , S2的大小關(guān)系是

查看答案和解析>>

同步練習(xí)冊(cè)答案