【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動點(diǎn),連接PQ,則PQ長的最大值與最小值的和是( 。

A. 9 B. 10 C. D.

【答案】A

【解析】

如圖,設(shè)⊙OAC相切于點(diǎn)E,連接OE,作OP1BC垂足為P1交⊙OQ1,

此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1,求出OP1,如圖當(dāng)Q2AB邊上時,P2

B重合時,P2Q2最大值=5+3=8,由此不難解決問題.

如圖,設(shè)⊙OAC相切于點(diǎn)E,連接OE,作OP1BC垂足為P1交⊙OQ1,

此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1,

AB=10,AC=8,BC=6,

AB2=AC2+BC2

∴∠C=90°,

∵∠OP1B=90°,

OP1AC

AO=OB,

P1C=P1B,

OP1=AC=4,

P1Q1最小值為OP1﹣OQ1=1,

如圖,當(dāng)Q2AB邊上時,P2B重合時,P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,

P2Q2最大值=5+3=8,

PQ長的最大值與最小值的和是9.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BD平分ABC,

1)作圖:作BC邊的垂直平分線分別交BCBD于點(diǎn)E,F(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);

2)在(1)的條件下,連接CF,若A=60°,ABD=24°,求ACF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,A=30°,AB=8,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC向終點(diǎn)C運(yùn)動,在AB上以每秒8個單位長度的速度運(yùn)動,在BC上以每秒2個單位長度的速度運(yùn)動,點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以每秒個單位長度的速度運(yùn)動,兩點(diǎn)同時出發(fā),當(dāng)點(diǎn)P停止時,點(diǎn)Q也隨之停止.設(shè)點(diǎn)P運(yùn)動的時間為t秒.

(1)求線段AQ的長;(用含t的代數(shù)式表示)

(2)當(dāng)點(diǎn)PAB邊上運(yùn)動時,求PQ與△ABC的一邊垂直時t的值;

(3)設(shè)△APQ的面積為S,求St的函數(shù)關(guān)系式;

(4)當(dāng)△APQ是以PQ為腰的等腰三角形時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,P是AB上的動點(diǎn)P異于A、B,過點(diǎn)P的直線截ABC,使截得的三角形與ABC相似,我們不妨稱這種直線為過點(diǎn)P的ABC的相似線,簡記為P,為自然數(shù)

1如圖,A=90°,B=C,當(dāng)BP=2PA時,P、P都是過點(diǎn)P的ABC的相似線其中BC,AC,此外還有_______條

2如圖,C=90°,B=30°,當(dāng)_____時,P截得的三角形面積為ABC面積的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BCAC,點(diǎn)DBC上,且DCAC,∠ACB的平分線CFAD于點(diǎn)F,點(diǎn)EAB的中點(diǎn),連結(jié)EF

1)求證:EFBC;

2)若四邊形BDFE的面積為3,求AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次學(xué)生夏令營活動,有小學(xué)生、初中生、高中生和大學(xué)生參加,共200人,各類學(xué)生人數(shù)比例見扇形統(tǒng)計(jì)圖.

(1)參加這次夏令營活動的初中生共有多少人?

(2)活動組織者號召參加這次夏令營活動的所有學(xué)生為貧困學(xué)生捐款.結(jié)果小學(xué)生每人

捐款 5 元,初中生每人捐款 10 元,高中生每人捐款 15 元,大學(xué)生每人捐款 20 元.問平均 每人捐款是多少元?

(3)在(2)的條件下,把每個學(xué)生的捐款數(shù)額(以元為單位)——記錄下來,則在這組數(shù)據(jù)中,眾數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點(diǎn)D,連接CD并延長交AB的延長線于點(diǎn)F

1)求證:CF是⊙O的切線;

2)若∠F=30°EB=4,求圖中陰影部分的面積(結(jié)果保留根號和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的對角線交于點(diǎn)點(diǎn),分別在,上()且,的延長線交于點(diǎn),的延長線交于點(diǎn),連接.

1)求證:.

2)若正方形的邊長為4,的中點(diǎn),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x與拋物線y=x2﹣x﹣3交于A、B兩點(diǎn),點(diǎn)P是拋物線上的一個動點(diǎn),過點(diǎn)P作直線PQx軸,交直線y=x于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為m,則線段PQ的長度隨m的增大而減小時m的取值范圍是( 。

A. m<﹣1或m B. m<﹣1或<m<3 C. m<﹣1或m>3 D. m<﹣1或1<m<3

查看答案和解析>>

同步練習(xí)冊答案