【題目】(問(wèn)題提出):有同樣大小正方形256個(gè),拼成如圖1所示的的一個(gè)大的正方形.請(qǐng)問(wèn)如果用一條直線穿過(guò)這個(gè)大正方形的話,最多可以穿過(guò)多少個(gè)小正方形?
(問(wèn)題探究):我們先考慮以下簡(jiǎn)單的情況:一條直線穿越一個(gè)正方形的情況.(如圖2)
從圖中我們可以看出,當(dāng)一條直線穿過(guò)一個(gè)小正方形時(shí),這條直線最多與正方形上、下、左、右四條邊中的兩個(gè)邊相交,所以當(dāng)一條直線穿過(guò)一個(gè)小正方形時(shí),這條直線會(huì)與其中某兩條邊產(chǎn)生兩個(gè)交點(diǎn),并且以兩個(gè)交點(diǎn)為頂點(diǎn)的線段會(huì)全部落在小正方形內(nèi).
這就啟發(fā)我們:為了求出直線最多穿過(guò)多少個(gè)小正方形,我們可以轉(zhuǎn)而去考慮當(dāng)直線穿越由小正方形拼成的大正方形時(shí)最多會(huì)產(chǎn)生多少個(gè)交點(diǎn).然后由交點(diǎn)數(shù)去確定有多少根小線段,進(jìn)而通過(guò)線段的根數(shù)確定下正方形的個(gè)數(shù).
再讓我們來(lái)考慮正方形的情況(如圖3):
為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線右上方至左下方穿過(guò)一個(gè)的正方形,我們從兩個(gè)方向來(lái)分析直線穿過(guò)正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的兩條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的四條線段;這樣直線最多可穿過(guò)的大正方形中的六條線段,從而直線上會(huì)產(chǎn)生6個(gè)交點(diǎn),這6個(gè)交點(diǎn)之間的5條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線最多能經(jīng)過(guò)5個(gè)小正方形.
(問(wèn)題解決):
(1)有同樣大小的小正方形16個(gè),拼成如圖4所示的的一個(gè)大的正方形.如果用一條直線穿過(guò)這個(gè)大正方形的話,最多可以穿過(guò)_________個(gè)小正方形.
(2)有同樣大小的小正方形256個(gè),拼成的一個(gè)大的正方形.如果用一條直線穿過(guò)這個(gè)大正方形的話,最多可以穿過(guò)___________個(gè)小正方形.
(3)如果用一條直線穿過(guò)的大正方形的話,最多可以穿過(guò)___________個(gè)小正方形.
(問(wèn)題拓展):
(4)如果用一條直線穿過(guò)的大長(zhǎng)方形的話(如圖5),最多可以穿過(guò)個(gè)___________小正方形.
(5)如果用一條直線穿過(guò)的大長(zhǎng)方形的話(如圖6),最多可以穿過(guò)___________個(gè)小正方形.
(6)如果用一條直線穿過(guò)的大長(zhǎng)方形的話,最多可以穿過(guò)________個(gè)小正方形.
(類比探究):
由二維的平面我們可以聯(lián)想到三維的立體空間,平面中的正方形中四條邊可聯(lián)想到正方體中的正方形的六個(gè)面,類比上面問(wèn)題解決的方法解決如下問(wèn)題:
(7)如圖7有同樣大小的小正方體8個(gè),拼成如圖所示的的一個(gè)大的正方體.如果用一條直線穿過(guò)這個(gè)大正方體的話,最多可以穿過(guò)___________個(gè)小正方體.
(8)如果用一條直線穿過(guò)的大正方體的話,最多可以穿過(guò)_________個(gè)小正方體.
【答案】(1)7;(2)31;(3);(4)4;(5)6 ;(6);(7)4;(8)
【解析】
(1)為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)4×4的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)4×4正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的3條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的5條線段;這樣直線L最多可穿過(guò)4×4的大正方形中的8條線段,從而直線L上會(huì)產(chǎn)生8個(gè)交點(diǎn),這8個(gè)交點(diǎn)之間的7條線段,這樣就不難得到答案.
(2)應(yīng)用規(guī)律2n-1得到答案.
(3)應(yīng)用規(guī)律2n-1得到答案.
(4)應(yīng)用規(guī)律2n-1得到答案.
(5)我們不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)2×3的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)2×3正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的1條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的4條線段;這樣直線L最多可穿過(guò)2×3的大正方形中的5條線段,從而直線L上會(huì)產(chǎn)生5個(gè)交點(diǎn),這5個(gè)交點(diǎn)之間的4條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)4個(gè)小正方形.
(6)不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)3×4的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)3×4正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的2條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的5條線段;這樣直線L最多可穿過(guò)4×4的大正方形中的7條線段,從而直線L上會(huì)產(chǎn)生7個(gè)交點(diǎn),這7個(gè)交點(diǎn)之間的6條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)6個(gè)小正方形.
(7)不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)m×n的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)m×n正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的(m-1)條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的(n+1)條線段;這樣直線L最多可穿過(guò)4×4的大正方形中的(m+n)條線段,從而直線L上會(huì)產(chǎn)生(m+n)個(gè)交點(diǎn),這m+n個(gè)交點(diǎn)之間的(m+n-1)條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)(m+n-1)個(gè)小正方形.
(8)用類似的方法得到規(guī)律:3n-2.即可解決.
(9)根據(jù)規(guī)律3n-2得到答案.
(1)再讓我們來(lái)考慮4×4正方形的情況(如圖4):為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)4×4的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)4×4正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的3條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的5條線段;這樣直線L最多可穿過(guò)4×4的大正方形中的8條線段,從而直線L上會(huì)產(chǎn)生8個(gè)交點(diǎn),這8個(gè)交點(diǎn)之間的7條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)7個(gè)小正方形.
故答案為7
(2)我們發(fā)現(xiàn)直線穿越1×1正方形時(shí)最多經(jīng)過(guò)1個(gè)正方形,直線穿越2×2正方形時(shí)最多經(jīng)過(guò)3個(gè)正方形,直線穿越3×3正方形時(shí)最多經(jīng)過(guò)5個(gè)正方形,
直線穿越4×4正方形時(shí)最多經(jīng)過(guò)7個(gè)正方形,…直線穿越n×n正方形時(shí)最多經(jīng)過(guò)2n-1個(gè)正方形.
∴直線穿越10×10正方形時(shí)最多經(jīng)過(guò)19個(gè)正方形.
故答案為19.
(3)由(2)可知,有2×16-1=31個(gè)正方形,
故答案為31.
(4)由(2)可知有2n-1個(gè)正方形.
故答案為2n-1.
(5)為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)2×3的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)2×3正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的1條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的4條線段;這樣直線L最多可穿過(guò)2×3的大正方形中的5條線段,從而直線L上會(huì)產(chǎn)生5個(gè)交點(diǎn),這5個(gè)交點(diǎn)之間的4條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)4個(gè)小正方形,
故答案為4.
(6)為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)3×4的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)3×4正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的2條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的5條線段;這樣直線L最多可穿過(guò)4×4的大正方形中的7條線段,從而直線L上會(huì)產(chǎn)生7個(gè)交點(diǎn),這7個(gè)交點(diǎn)之間的6條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)6個(gè)小正方形.
故答案為6.
(7)為了讓直線穿越更多的小正方形,我們不妨假設(shè)直線L右上方至左下方穿過(guò)一個(gè)m×n的正方形,我們從兩個(gè)方向來(lái)分析直線l穿過(guò)m×n正方形的情況:從上下來(lái)看,這條直線由下至上最多可穿過(guò)上下平行的(m-1)條線段;從左右來(lái)看,這條直線最多可穿過(guò)左右平行的(n+1)條線段;這樣直線L最多可穿過(guò)4×4的大正方形中的(m+n)條線段,從而直線L上會(huì)產(chǎn)生(m+n)個(gè)交點(diǎn),這m+n個(gè)交點(diǎn)之間的(m+n-1)條線段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線L最多能經(jīng)過(guò)(m+n-1)個(gè)小正方形,
故答案為(m+n-1).
(8)用類似的方法可以得到:用一條直線穿過(guò)1×1×1正方體的話,最多可以穿過(guò)1個(gè)小正方體,用一條直線穿過(guò),2×2×2正方體的話,最多可以穿過(guò)4個(gè)小正方體,用一條直線穿過(guò),3×3×3正方體的話,最多可以穿過(guò)7個(gè)小正方體,用一條直線穿過(guò)4×4×4正方體的話,最多可以穿過(guò)10個(gè)小正方體,…用一條直線穿過(guò),n×n×n正方體的話,最多可以穿過(guò)(3n-2)個(gè)小正方體.
故答案為4.
(9)由(8)可知有(3n-2)個(gè)正方形,
故答案為(3n-2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于四個(gè)數(shù)“,,,”及四種運(yùn)算“,,,”,列算式解答:
(1)求這四個(gè)數(shù)的和;
(2)在這四個(gè)數(shù)中選出兩個(gè)數(shù),按要求進(jìn)行下列計(jì)算,使得:
①兩數(shù)差的結(jié)果最;
②兩數(shù)積的結(jié)果最大;
(3)在這四個(gè)數(shù)中選出三個(gè)數(shù),在四種運(yùn)算中選出兩種,組成一個(gè)算式,使運(yùn)算結(jié)果等于沒(méi)選的那個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,為直徑,過(guò)點(diǎn)的直線與相交于點(diǎn),是弦延長(zhǎng)線上一點(diǎn),,的平分線與分別相交于點(diǎn),,是的中點(diǎn),過(guò)點(diǎn)作,與,的延長(zhǎng)線分別交于點(diǎn),.
(1)求證:是的切線;
(2)若,.
①求的半徑;
②連接,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為向明中學(xué)提供午餐的某送餐公司計(jì)劃每月最后一天推出學(xué)生“驚喜套餐”,現(xiàn)做出幾款套餐后打算每班邀請(qǐng)一位學(xué)生代表來(lái)品嘗.初三(6)班有44人(學(xué)號(hào)從1~44號(hào)),班長(zhǎng)設(shè)計(jì)了一個(gè)推選本班代表的辦法:從一副撲克牌中選取了分別標(biāo)有數(shù)字1、2、3、4的四張牌.先抽取一張牌記下數(shù)字后,放回洗勻;再抽取一張牌記下數(shù)字,兩個(gè)數(shù)字依次組成學(xué)生代表的學(xué)號(hào).比如第一張抽到1,第二張抽到4,就是學(xué)號(hào)為14的這個(gè)同學(xué)作為本班代表.
(1)如果小林的學(xué)號(hào)為23,請(qǐng)用列表法或畫出樹(shù)狀圖的方法,求出他被抽到的概率;
(2)對(duì)初三(6)班的每位同學(xué)來(lái)說(shuō),班長(zhǎng)設(shè)計(jì)的辦法是否公平?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表記錄了甲、乙、丙、丁四名同學(xué)最近幾次數(shù)學(xué)考試成績(jī)的平均數(shù)與方差.根據(jù)表中數(shù)據(jù),要從中選擇一名成績(jī)好且發(fā)揮穩(wěn)定的同學(xué)參加數(shù)學(xué)競(jìng)賽,應(yīng)該選擇__________(填“甲”, “乙”, “丙”, “丁”).
甲 | 乙 | 丙 | 丁 | |
平均數(shù)(分) | 92 | 95 | 95 | 92 |
方差 | 3.6 | 3.6 | 7.4 | 8.1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市一段時(shí)期內(nèi)對(duì)某種商品經(jīng)銷情況進(jìn)行統(tǒng)計(jì)得到該商品的銷售數(shù)量(件)由基礎(chǔ)銷售量與浮動(dòng)銷售量?jī)蓚(gè)部分組成,其中基本銷售量保持不變,浮動(dòng)銷售量與售價(jià)(元/件,)成反比例,銷售過(guò)程中得到的部分?jǐn)?shù)據(jù)如下:
售價(jià) | 8 | 10 |
銷售數(shù)量 | 70 | 58 |
(1)求與之間的函數(shù)關(guān)系式;
(2)當(dāng)該商品銷售數(shù)量為50件時(shí),求每件商品的售價(jià);
(3)設(shè)銷售總額為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接DG,過(guò)點(diǎn)A作AH∥DG,交BG于點(diǎn)H.連接HF,AF,其中AF交EC于點(diǎn)M.
(1)求證:△AHF為等腰直角三角形.
(2)若AB=3,EC=5,求EM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某學(xué)校旗桿AB旁邊有一個(gè)半側(cè)的時(shí)鐘模型,時(shí)鐘的9點(diǎn)和3點(diǎn)的刻度線剛好和地面重合,半圓的半徑2m,旗桿的底端A到鐘面9點(diǎn)刻度C的距離為11m,一天小明觀察到陽(yáng)光下旗桿頂端B的影子剛好投到時(shí)鐘的11點(diǎn)的刻度上,同時(shí)測(cè)得1米長(zhǎng)的標(biāo)桿的影長(zhǎng)1.2m.求旗桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,雙曲線經(jīng)過(guò)點(diǎn).
(1)求直線和雙曲線的解析式.
(2)平移直線,使它與雙曲線有唯一公共點(diǎn)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com